Skip to main content
Log in

Biomechanics of infarcted left ventricle: a review of modelling

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Mathematical modelling in biomechanics of infarcted left ventricle (LV) serves as an indispensable tool for remodelling mechanism exploration, LV biomechanical property estimation and therapy assessment after myocardial infarction (MI). However, a review of mathematical modelling after MI has not been seen in the literature so far. In the paper, a systematic review of mathematical models in biomechanics of infarcted LV was established. The models include comprehensive cardiovascular system model, essential LV pressure–volume and stress-stretch models, constitutive laws for passive myocardium and scars, tension models for active myocardium, collagen fibre orientation optimization models, fibroblast and collagen fibre growth/degradation models and integrated growth-electro-mechanical model after MI. The primary idea, unique characteristics and key equations of each model were identified and extracted. Discussions on the models were provided and followed research issues on them were addressed. Considerable improvements in the cardiovascular system model, LV aneurysm model, coupled agent-based models and integrated electro-mechanical-growth LV model are encouraged. Substantial attention should be paid to new constitutive laws with respect to stress-stretch curve and strain energy function for infarcted passive myocardium, collagen fibre orientation optimization in scar, cardiac rupture and tissue damage and viscoelastic effect post-MI in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

CFD:

Computational fluid dynamics

d:

Day

DPVR:

Diastolic pressure–volume relation

ED:

End-diastolic or end of diastole

EDP:

End-diastolic pressure

ECM:

Extracellular matrix

ES:

End-systolic or end of systole

ESP:

End-systolic pressure

ESPVR:

End-diastolic pressure–volume relations

FE:

Finite element

FEA:

Finite element analysis

FEM:

Finite element model

LGE:

Late gadolinium enhancement

LV:

Left ventricle

LVEDP:

Left ventricle end-diastolic pressure

LVESV:

Left ventricular systolic volume

MI:

Myocardial infarction

MMPs:

Matrix metalloproteinases

MRI:

Magnetic resonance imaging

ODE:

Ordinary differential equation

PIM:

Percent inactive myocardium

PSM:

Percent shorting of myocardium

p–V :

Pressure–volume

RV:

Right ventricle

SAVER:

Surgical anterior ventricular restoration

TGF-β:

Transforming growing factor β

STE:

Speckle-tracking echocardiography

TIMPs:

Metalloproteinases

wk:

Week

References

  1. https://www.who.int/cardiovascular_diseases/priorities/secondary_prevention/country/en/index1.html.

  2. Bhatnagar P, Wickramasinghe K, Williams J, Rayner M, Townsend N. The epidemiology of cardiovascular disease in the UK 2014. Heart. 2015;101(15):1–8.

    Google Scholar 

  3. Richardson WJ, Clarke SA, Quinn TA, et al. Physiological implications of myocardial scar structure. Comput Physiol. 2015;5(4):1877–909.

    Google Scholar 

  4. Lopez-Perez A, Sebastian R, Ferrero J. Three-dimensional cardiac computational modelling: methods, features and applications. BioMed Eng Online. 2015;14:35. https://doi.org/10.1186/s12938-015-0033-5.

    Article  Google Scholar 

  5. Wang VY, Nielsen PM, Nash MP. Image-Based Predictive Modeling of Heart Mechanics. Annu Rev Biomed Eng. 2015;17:351–83.

    Google Scholar 

  6. Sack KL, Davies NH, Guccione JM, et al. Personalised computational cardiology: Patient-specific modelling in cardiac mechanics and biomaterial injection therapies for myocardial infarction. Heart Fail Rev. 2016;21:819–26.

    Google Scholar 

  7. Voorhees AP, Han HC. Biomechanics of cardiac function. Comput Physiol. 2015;5(4):1623–44.

    Google Scholar 

  8. Avazmohammadi R, Soares JS, Li DS, Raut SS, Gorman RC, Sacks MS. A contemporary look at biomechanical models of myocardium. Annu Rev Biomed Eng. 2019;21:417–42.

    Google Scholar 

  9. Yang JH, Saucerman JJ. Computational models reduce complexity and accelerate insight into cardiac signalling networks. Circ Res. 2011;108(1):70–84.

    Google Scholar 

  10. Zeigler AC, Richardson WJ, Holmes JW, et al. Computational modelling of cardiac fibroblasts and fibrosis. J Mol Cell Cardiol. 2016;93:73–83.

    Google Scholar 

  11. Richardson WJ, Holmes JW. Why infarct expansion such as elusive therapeutic target? J Cardiovasc Transl Res. 2015;8(7):421–30.

    Google Scholar 

  12. Li WG. Biomechanics of infarcted left ventricle-A review of experiments. J Mech Behav Biomed Mater. 2020;103:103591.

    Google Scholar 

  13. Pfeffer JM, Pfeffer MA, Fletcher PJ, et al. Progressive ventricular remodelling in rat with myocardial infarction. Am J Physiol Heart Circ Physiol. 1991;260:H1406–H14141414.

    Google Scholar 

  14. Pilla JJ, Gorman JH, Gorman RC. Theoretic impact on infarct compliance on left ventricular function. Ann Thorac Surg. 2009;87(3):803–10.

    Google Scholar 

  15. Drzewiecki GM, Pilla JJ, Welkowitz W. Design and control of the atrio-aortic left ventricular assist device based on O2 consumption. IEEE Trans Bio-Med Eng. 1990;37(2):47–55.

    Google Scholar 

  16. Suga H. Theoretical analysis of a left-ventricular pumping model based on the systolic time-varying pressure/volume ratio. IEEE Trans Bio-Med Eng. 1971;18(1):47–55.

    Google Scholar 

  17. Spotnitz H, Sonnenblick EH, Spiro D. Relation of ultrastructure to function in the intact heart: sarcomere structure relative to pressure volume curves of intact left ventricles of dog and cat. Circ Res. 1966;18(1):49–66.

    Google Scholar 

  18. Laks MM, Garner D, Swan HJC. Volumes and compliances measured simultaneously in the right and left ventricles of the dog. Circ Res. 1967;20(5):565–9.

    Google Scholar 

  19. Noble MIM, Milne ENC, Goerke RJ, et al. Left ventricular filling and diastolic pressure-volume relations in the conscious dig. Circ Res. 1969;24(2):269–83.

    Google Scholar 

  20. Diamond G, Forrester JS, Hargis J, et al. Diastolic pressure-volume relationship in the canine left ventricle. Circ Res. 1971;29(3):269–83.

    Google Scholar 

  21. Murakami T, Kawai C. Advances in the understanding of systolic and diastolic functions of the heart. Int J Cardiol. 1991;32(2):149–74.

    Google Scholar 

  22. Dodge HT, Hay RE, Sandler H. Pressure-volume characteristics of the diastolic left ventricle of man with heart disease. Am Heart J. 1962;64(4):503–11.

    Google Scholar 

  23. Gaasch WH, Levine HJ, Quinones MA, et al. Left ventricular compliance: mechanisms and clinical implications. Am J Cardiol. 1976;38(4):645–53.

    Google Scholar 

  24. Mirsky I. Assessment of passive elastic stiffness of cardiac muscle: mathematical concepts, physiologic and clinical considerations, directions of future research. Prog Cardiovasc Dis. 1976;18(4):277–308.

    Google Scholar 

  25. Wisenbaugh T, Harlamert E, DeMaria AN. Relation of left ventricular filling dynamics to alternations in load and compliance in patients with and without pressure-overload hypertrophy. Circulation. 1990;81(1):101–6.

    Google Scholar 

  26. Liu CP, Ting CT, Lawrence W. Diminished contractile response to increased heart rate in intact human left ventricular hypertrophy, Serial changes in left ventricular relaxation and chamber stiffness after larger myocardial infarction in rats. Circulation. 1993;77(6):1424–31.

    Google Scholar 

  27. Forrester JS, Diamond G, Parmley WW, et al. Early increase in left ventricular compliance after myocardial infarction. J Clin Investig. 1972;51(3):598–603.

    Google Scholar 

  28. Fletcher PJ, Pfeffer JM, Pfeffer MA. Left ventricular diastolic pressure-volume relations in rats with healed myocardial infarction. Circ Res. 1981;49(3):618–26.

    Google Scholar 

  29. Diamond G, Forrester JS. Effect of coronary artery disease and acute myocardial infarction on left ventricular compliance in man. Circulation. 1972;45(1):11–9.

    Google Scholar 

  30. Bogen DK, Rabinowitz SA, Needleman A, et al. An analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circ Res. 1980;47(5):728–41.

    Google Scholar 

  31. Ogden R. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond Ser A. 1972;326(1567):565–84.

    MATH  Google Scholar 

  32. Sunagawa K, Maughan WL, Sagawa K. Effect of regional ischemia on the left ventricular end-systolic pressure-volume relationship of isolated canine hearts. Circ Res. 1983;52(2):170–8.

    Google Scholar 

  33. Sodums MT, Badke FR, Starling MR, et al. Evaluation of left ventricular contractile performance utilizing end-systolic pressure-volume relationships in conscious dogs. Circ Res. 1984;54(6):731–9.

    Google Scholar 

  34. Kass DA, Marino P, Maughan WL, et al. Determinants of end-systolic pressure-volume relations during acute regional ischemia in situ. Circulation. 1989;80(6):1783–94.

    Google Scholar 

  35. Nakajima H, Nakajima HO, Hammond RL, et al. Chronic changes of end-systolic pressure-volume relationship after regional myocardial infarction. J Card Surg. 1995;10(6):652–64.

    Google Scholar 

  36. Setser R, Henson RE II, Allen JS, et al. Left ventricular contractility is impaired following myocardial infarction in the pig and rat: assessment by the end systolic pressure–volume relation using a single-beat estimation technique and cine magnetic resonance imaging. Ann Biomed Eng. 2000;28(5):484–94.

    Google Scholar 

  37. Grossman W, Braunwald E, Mann T, et al. Contractile state of the left ventricle in man as evaluated from end-systolic pressure-volume relations. Circulation. 1977;56(5):845–52.

    Google Scholar 

  38. Mehmel HC, Stokckins B, Ruffmann K, et al. The linearity of the end-systolic pressure-volume relationship in man and its sensitivity for assessment of left ventricular function. Circulation. 1981;63(6):1216–22.

    Google Scholar 

  39. Burkhoff D, Siugiura S, Yue DT, et al. Contractility-dependent curvilinearity of end-systolic pressure-volume relations. Am J Physiol Heart Circ Physiol. 1987;252:H1218–H1227.

    Google Scholar 

  40. Kass DA, Beyar R, Lankford E, et al. Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relations. Circulation. 1989;79(1):167–78.

    Google Scholar 

  41. Bogen DK, Needleman A, McMahon TA. An analysis of Myocardial Infarction. Circ Res. 1984;55(6):805–15.

    Google Scholar 

  42. Perl M, Horowitz A, Sideman S. Comprehensive model for simulation of left ventricle mechanics. Med Biol Eng Comput. 1986;24(2):145–9.

    Google Scholar 

  43. Perl M, Horowitz A. Mechanical model for simulation of ischaemia and infarction of the left ventricle. Med Biol Eng Comput. 1987;25(3):284–8.

    Google Scholar 

  44. Fung YC. Elasticity of soft tissues in simple elongation. Am J Physiol. 1967;213(6):1532–44.

    Google Scholar 

  45. Laird JD, Vellekoop HP. Time course of passive elasticity of myocardial tissue following experimental infarction in rabbits and its relation to mechanical dysfunction. Circ Res. 1977;41(5):715–21.

    Google Scholar 

  46. Yettram AL, Vinson CA, Gibson DG. Influence of the distribution of stiffness in the human left ventricular myocardium shape change in diastole. Med Biol Eng Comput. 1979;17(5):553–62.

    Google Scholar 

  47. Akaishi M, Weintraub WS, Schneider RM, et al. Analysis of systolic bulging. Circ Res. 1986;58(2):209–17.

    Google Scholar 

  48. Fomovsky GM, Holmes JW. Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. Am J Physiol Heart Circ Physiol. 2010;298(1):H221–H228.

    Google Scholar 

  49. Mojsejenko D, McGarvey JR, Dorsey SM, et al. Estimating passive mechanical properties in a myocardial infarction using MRI and finite element simulations. Biomech Model Mechanobiol. 2015;14(3):633–47.

    Google Scholar 

  50. Guccione JM, McCulloch AD, Waldman LK. Passive material properties of intact ventricular myocardium determined from a cylindrical model. ASME J Biomech Eng. 1991;113(1):42–55.

    Google Scholar 

  51. Fan L, Yao J, Yang C, et al. Infarcted left ventricles have stiffer material properties and lower stiffness variation: 3D echo-based modeling to quantify in vivo ventricle material properties. ASME J Biomech Eng. 2015;137(8):081005.

    Google Scholar 

  52. Fan L, Yao J, Yang C, et al. Material stiffness parameters as potential predictors of presence of left ventricle myocardial infarction: 3D echo-based computational modeling study. Biomed Eng Online. 2016;15:34. https://doi.org/10.1186/s12938-016-0151-8.

    Article  Google Scholar 

  53. Fan L, Yao J, Yang C, et al. Modeling active contraction and relaxation of left ventricle using different zero-load diastole and systole geometries for better material parameter estimation and stress/strain calculations. Mol Cell Biomech. 2016;13(1):44–68.

    Google Scholar 

  54. Hill AV. The heat of shortening and the dynamic constants in muscle. Proc R Soc Lond B. 1938;126(843):136–65.

    Google Scholar 

  55. Bovendeerd PHM, Arts T, Delhaas T, et al. Regional wall mechanics in the ischemic left ventricle: numberical modelling and dog experiments. Am J Physiol Heart Circ Physiol. 1996;270(1):H398–H410.

    Google Scholar 

  56. Guccione JM, Moonly SM, Moustakidis M, et al. Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: a finite element model study. Ann Thorac Surg. 2001;71(2):654–62.

    Google Scholar 

  57. Wenk FF, Eslami P, Zhang Z, et al. A novel method for quantifying the in-vivo mechanical effect of material injected into a myocardial infarction. Ann Thorac Surg. 2011;92(3):935–41.

    Google Scholar 

  58. Fomovsky GM, Macadangdang JR, Aliawadi G, et al. Model-based design mechanical therapies for myocardial infarction. J Cardiovasc Transl Res. 2011;4(1):82–91.

    Google Scholar 

  59. Gao H, Aderhold A, Mangion K, et al. Changes and classification in myocardial contractile function in the left ventricle following acute myocardial infarction. J R Soc Interface. 2017;14(132):20170203.

    Google Scholar 

  60. Gao H, Mangion K, Carrick D, et al. Estimating prognosis in patients with acute myocardial infarction using personalized computational heart models. Sci Rep. 2017;7(1):13527.

    Google Scholar 

  61. Holzapfel GA, Ogden RW. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc Ser A. 2009;367(1902):3445–75.

    MathSciNet  MATH  Google Scholar 

  62. Niederer SA, Hunter PJ, Smith NP. A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophys J. 2006;90(5):1697–727.

    Google Scholar 

  63. Beriberoglu E, Goktepe S. Computational modelling of myocardial infarction. Procedia IUTAM. 2015;12:52–61.

    Google Scholar 

  64. Aliev R, Panfilov AY. A simple two-variable model of cardiac excitation. Chaos Solitons Fractals. 1996;7(3):293–301.

    Google Scholar 

  65. Goktepe S, Menzel A, Kuhl E. The generalized Hill model: a kinematic approach towards active muscle contraction. J Mech Phys Solids. 2014;72:20–39.

    MathSciNet  MATH  Google Scholar 

  66. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in human left ventricle. J Clin Investig. 1975;56(1):56–64.

    Google Scholar 

  67. Janz RF. Estimation of local myocardial stress. Am J Physiol Heart Circ Physiol. 1982;242(5):H875–H881.

    Google Scholar 

  68. Balzer P, Furber A, Delepine S, et al. Regional assessment of wall curvature and wall stress in left ventricle with magnetic resonance imaging. Am J Physiol Heart Circ Physiol. 1999;277(3):H901–H910.

    Google Scholar 

  69. Delepine S, Furber A, Beygui F, et al. 3-D MRI assessment of regional left ventricular systolic wall stress in patients with reperfused MI. Am J Physiol Heart Circ Physiol. 2003;284(4):H1190–H1197.

    Google Scholar 

  70. Prunier F, Brette S, Delepine S, et al. Three-dimensional MRI assessment of regional wall stress after acute myocardial infarction predicts postdischarge cardiac events. J Magn Reson Imaging. 2008;27(3):516–21.

    Google Scholar 

  71. Clerfond G, Biere L, Mateus V. End-systolic wall stress predicts post-discharge heart failure after acute myocardial infarction. Arch Cardiovasc Dis. 2015;108(5):310–20.

    Google Scholar 

  72. Regen DM, Anversa P, Capasso JM. Segmental calculation of left ventricular wall stresses. Am J Physiol Heart Circ Physiol. 1993;264(5):H1411–H1421.

    Google Scholar 

  73. Zhong L, Su Y, Gobeawan L, et al. Progressive left ventricular remodelling and apoptosis late after myocardial infarction in mouse heart. Am J Physiol Heart Circ Physiol. 2011;300:H1653–H1660.

    Google Scholar 

  74. Zhong L, Su Y, Yeo SY, et al. Left ventricular regional wall curvedness and wall stress inpatients with ischemic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2009;296(3):H573–H584.

    Google Scholar 

  75. Chen CH, Fetics B, Nevo E, et al. Noninvasive single-beat determination of left ventricular end-systolic elastane in humans. J Am Coll Cardiol. 2001;38(7):2028–34.

    Google Scholar 

  76. Hayashida W, Kumada T, Nohara R, et al. Left ventricular regional wall stress in dilated cardiomyopathy. Circulation. 1990;82(6):2075–83.

    Google Scholar 

  77. Segar DS, Moran M, Ryan T. End-systolic regional wall stress-length and stress-shortening relations in an experimental model of normal, ischemic and reperfused myocardium. J Am Coll Cardiol. 1991;17(2):1651–60.

    Google Scholar 

  78. Clerfond G, Biere L, Mateus V, et al. End-systolic wall stress predicts post-discharge heart failure after acute myocardial infarction. Arch Cardiovasc Dis. 2015;108(5):310–20.

    Google Scholar 

  79. Voorhees AP, Han HC. A model to determine the effect of collagen fiber alignment on heart function post myocardial infarction. Theor Biol Med Model. 2014;11(6):1–19.

    Google Scholar 

  80. Grytz R, Meschke G. Constitutive modelling of crimped collagen fibrils in soft tissues. J Mech Behav Biomed Mater. 2009;2(5):522–33.

    Google Scholar 

  81. Costa KD, Holmes JW, McCulloch AD. Modelling cardiac mechanical properties in three dimensions. Philos Trans R Soc Ser A. 2001;359(1783):1233–50.

    MATH  Google Scholar 

  82. Korenczuk CE, Barocas VH, Richardson WJ. Effects of collagen heterogeneity on myocardial infarct mechanics in a multiscale fiber network model. ASME J Biomech Eng. 2019;141(9):091015–91021.

    Google Scholar 

  83. Witzenburg CM, Dhume RY, Shah SB, et al. Failure of the porcine ascending aorta: multidirectional experiments and a unifying microstructural model. ASME J Biomech Eng. 2017;139(3):031005–31011.

    Google Scholar 

  84. Dhume RY, Shih ED, Barocas VH. Multiscale model of fatigue of collagen gels. Biomech Model Mechanobiol. 2019;18(1):175–87.

    Google Scholar 

  85. Friedman BM, Dunn MI. Postinfarction ventricular aneurysms. Clin Cardiol. 1995;18(9):505–11.

    Google Scholar 

  86. Ba’albaki HA, Clements SD. Left ventricular aneurysms: a review. Clin Cardiol. 1989;12(1):5–13.

    Google Scholar 

  87. Vayo HW. The theory of the left ventricular aneurysm. Bull Math Biophys. 1966;28(3):363–70.

    Google Scholar 

  88. Lowe TE, Love ER. Cardiac aneurysms-a mechanical analysis of their formation. Aust J Exp Biol Med Sci. 1948;26(6):497–513.

    Google Scholar 

  89. Lowe TE, Wartman WB. Myocardial infarction. British Heart Journal. 1944;6(3):115–28.

    Google Scholar 

  90. Robb JS, Robb RC. Abnormal distribution of the superficial muscle bundles in the human heart. Am Heart J. 1938;15(5):597–603.

    Google Scholar 

  91. Evans CL, Hill AV. The relation of length to tension development and heat production on contraction in muscle. J Physiol. 1914;49(1–2):10–6.

    Google Scholar 

  92. Radhakrishnan S, Ghista DN, Jayaraman G. Mechanical analysis of the development of left ventricular aneurysms. J Biomech. 1980;13(12):1031–9.

    Google Scholar 

  93. Radhakrishnan S, Ghista DN, Jayaraman G. Mechanics of left ventricular aneurysm. J Biomed Eng. 1986;8(1):9–23.

    Google Scholar 

  94. Mirsky I, McGill PL, Janz RF. Mechanical behaviour of ventricular aneurysms. Bull Math Biol. 1978;40(4):451–64.

    Google Scholar 

  95. Alexander H. A constitutive relation for rubber-like materials. Int J Eng Sci. 1968;6(9):549–63.

    Google Scholar 

  96. Alexander H. Tensile instability of initially spherical balloons. Int J Eng Sci. 1971;9(1):151–62.

    Google Scholar 

  97. Bogen DK, McMahon TA. Do cardiac aneurysms blow out? Biophys J. 1979;27(2):301–16.

    Google Scholar 

  98. Bartel T, Vanheiden H, Schaar J, et al. Biomechanical modelling of hemodynamic factors determining bulging of ventricular aneurysms. Ann Thoracic Surg. 2002;74(5):1581–7.

    Google Scholar 

  99. Parmley WW, Chuck L, Kivowitz C, et al. In vitro length-tension relations of human ventricular aneurysms. Am J Cardiol. 1973;32(7):889–94.

    Google Scholar 

  100. Janz RF, Walderon RJ. Predicted effect of chronic apical aneurysms on the passive stiffness of the human left ventricle. Circ Res. 1978;42(2):255–63.

    Google Scholar 

  101. Fester A, Samet P. Passive elasticity of the human left ventricle. Circulation. 1974;50(3):609–18.

    Google Scholar 

  102. Dang ABC, Guccione JM, Mishell JM, et al. Akinetic myocardial infarcts must contain contracting myocytes: finite-element model study. Am J Physiol Heart Circ Physiol. 2004;288(4):H1844–H1850.

    Google Scholar 

  103. Walker JC, Ratcliffe MB, Zhang P, et al. MRI-based finite-element analysis of left ventricular aneurysm. Am J Physiol Heart Circ Physiol. 2005;289(2):H1692–H1700.

    Google Scholar 

  104. Dang ABC, Guccione JM, Zhang P, et al. Effect of ventricular size and patch stiffness in surgical anterior ventricular restoration: a finite element model study. Ann Thorac Surg. 2005;79(1):185–93.

    Google Scholar 

  105. Walker JC, Ratcliffe MB, Zhang P, et al. Magnetic resonance imaging-based finite element stress analysis after linear repair of left ventricular aneurysm. J Thorac Cardiovasc Surg. 2008;135(5):1094–102.

    Google Scholar 

  106. Sun K, Stander N, Jhun CS, et al. Computationally efficient formal optimization of regional myocardial contractility in a sheep with left ventricular aneurysm. ASME J Biomech Eng. 2009;131(11):111001-1-10.

    Google Scholar 

  107. Wall ST, Walker JC, Healy KE, et al. Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation. 2006;114(24):2627–35.

    Google Scholar 

  108. Wenk JF, Wall ST, Peterson RC, et al. A method for automatically optimizing medical devices for treating heart failure: designing polymeric injection patterns. J Biomech Eng. 2009;131(12):121011-1-7.

    Google Scholar 

  109. McGarvey JR, Mojssejenko D, Shauna MS, et al. Temporal changes in infarct material properties: an in vitro assessment using magnetic resonance imaging and finite element simulations. Ann Thorac Surg. 2015;100(2):582–90.

    Google Scholar 

  110. Menzel A, Kuhl E. Frontiers in growth and remodelling. Mech Res Commun. 2012;42:1–14.

    Google Scholar 

  111. Bovendeerd PHM. Modeling of cardiac growth and remodelling of myofiber orientation. J Biomech. 2012;45(5):872–81.

    Google Scholar 

  112. Wang VY, Hussan JR, Yousefi H, et al. Modelling cardiac tissue growth and remodelling. J Elast. 2017;129(1–2):283–305.

    MathSciNet  MATH  Google Scholar 

  113. Zeigler AC, Richardson WJ, Holmes JW, et al. A computational model of cardiac fibroblast signalling predicts context-dependence drivers of myofibroblast differentiation. J Mol Cell Cardiol. 2016;94:72–81.

    Google Scholar 

  114. Rohde LE, Ducharme A, Arroyo LH, et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation. 1999;99(23):3063–70.

    Google Scholar 

  115. MacKenna D, Summerour SR, Villarreal FJ. Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res. 2000;46(2):257–64.

    Google Scholar 

  116. Lindsey M, Wedin K, Brown MD, et al. Matrix-dependent mechanism of neutrophil-mediated release and activation of matrix metalloproteinase 9 in myocardial ischemia/reperfusion. Circulation. 2001;103(17):2181–7.

    Google Scholar 

  117. Lindsey M, Escobar GP, Dobrucki LW, et al. Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Physiol Heart Circ Physiol. 2006;290(1):H232–H239.

    Google Scholar 

  118. Bujak M, Frangogiannis NG. The Role of TGF-β signalling in myocardial infarction and cardiac remodelling. Cardiovasc Res. 2007;74(2):184–95.

    Google Scholar 

  119. Zamilpa R, Lindsey ML. Extracellular matrix turnover and signaling during cardiac remodelling following MI: causes and consequences. J Mol Cell Cardiol. 2009;48(3):558–63.

    Google Scholar 

  120. Jin YF, Han HC, Berger J, et al. Combining experimental and mathematical modelling to reveal mechanisms of macrophage-dependent left ventricular remodelling. BMC Syst Biol. 2011;5:60. https://doi.org/10.1186/1752-0509-5-60.

    Article  Google Scholar 

  121. McDougall S, Dallon J, Sherratt J, et al. Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philos Trans R Soc Ser A. 2006;364(1843):1385–405.

    MathSciNet  Google Scholar 

  122. Rouillard AD, Holmes JW. Mechanical regulation of fibroblast migration and collagen remodelling in healing myocardial infarcts. J Physiol. 2012;590(18):4585–602.

    Google Scholar 

  123. Fomovsky GM, Rouillard AD, Holmes JW. Regional mechanics determine collagen fiber structure in healing myocardial infarcts. J Mol Cell Cardiol. 2012;52(5):1083–90.

  124. Richardson WJ, Holmes JW. Emergence of collagen orientation heterogeneity in healing infarcts and an agent-based model. Biophys J. 2016;110(10):2266–77.

    Google Scholar 

  125. Rouillard AD, Holmes JW. Coupled agent-based and finite-element models for predicting scar structure following myocardial infarction. Prog Biophys Mol Biol. 2014;115(2–3):235–43.

    Google Scholar 

  126. Zhuan X, Luo XY, Gao H, et al. Coupled agent-based and hyperplastic modelling of the left ventricle post-myocardial infarction. Int J Numer Methods Biomed Eng. 2019;35(1):e3155.

    Google Scholar 

  127. Klepach D, Lee LC, Wenk JF, et al. Growth and remodelling of the left ventricle: a case study of myocardial infarction and surgical ventricular restoration. Mech Res Commun. 2012;42:134–41.

    Google Scholar 

  128. Saez P, Kuhl E. Computational modelling of acute myocardial infarction. Comput Methods Biomech Biomed Eng. 2016;19(10):1107–15.

    Google Scholar 

  129. Lee LC, Sundnes J, Genet M, et al. An integrated electromechanical-growth heart model for simulating cardiac therapies. Biomech Model Mechanobiol. 2016;15(4):791–893.

    Google Scholar 

  130. Lee LC, Genet M, Acevedo-Bolton G, et al. A computational model that predicts reverse growth in response to mechanical unloading. Biomech Model Mechanobiol. 2015;14(2):217–29.

    Google Scholar 

  131. Wall ST, Guccione JM, Ratcliffe MB, et al. Electro-mechanical feedback with reduced cellular connectivity alters electrical activity in an infarct injured left ventricle: a finite element model study. Am J Physiol Heart Circ Physiol. 2012;302(1):H206–H214214.

    Google Scholar 

  132. Sundnes J, Wall ST, Osnes H, et al. Improved discretisation and linearisation of active tension in strongly coupled cardiac electro-mechanics simulations. Computer Methods in Biomechanics and Biomedical Engineering. 2014;17(6):604–15.

    Google Scholar 

  133. Burkhoff D, Tyberg JV. Why does pulmonary venous pressure rise after onset of LV dysfunction: a theoretical analysis. Am J Physiol Heart Circ Physiol. 1993;265:H1818–1828.

    Google Scholar 

  134. Witzenburg CM, Holmes JW. A comparison of phenomenological growth laws for myocardial hypertrophy. J Elast. 2017;129(1–2):257–81.

    MATH  Google Scholar 

  135. Witzenburg CM, Holmes JW. Predicting the time course of ventricular dilation and thickening using a rapid compartmental model. Journal of Cardiovascular Translational Research. 2018;11(2):109–22.

    Google Scholar 

  136. Witzenburg CM, Holmes JW. The impact of hemodynamic reflex compensation following myocardial infarction on subsequent ventricular remodelling. ASME J Biomech Eng. 2019;141:091010–91011.

    Google Scholar 

  137. Bozkurt S. Mathematical modeling of cardiac function to evaluate clinical cases in adults and children. PLoS ONE. 2019;14(10):e0224663.

    Google Scholar 

  138. Connelly CM, Vogel WM, Wiegner AW, et al. Effects of reperfusion after coronary artery occlusion on post-infarction scar tissue. Circ Res. 1985;57(4):562–77.

    Google Scholar 

  139. Kendall RW, DeWood MA. Postinfarction cardiac rupture: surgical success and review of the literature. Ann Thorac Surg. 1978;25(4):311–5.

    Google Scholar 

  140. Arevalo HJ, Vadakkumpadan F, Guallar E, et al. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat Commun. 2016. https://doi.org/10.1038/ncomms11437.

    Article  Google Scholar 

  141. Sainte-Marie J, Chapelle D, Cimrman R, et al. Modeling and estimation of the cardiac electromechanical; activity. Comput Struct. 2006;84:1743–59.

    MathSciNet  Google Scholar 

  142. Sermesant M, Moireau P, Camara O, et al. Cardiac function estimation from MRI using a heart model and data assimilation: Advances and difficulties. Med Image Anal. 2006;10:642–56.

    Google Scholar 

  143. Chabiniok R, Moireau P, Lesault PF, et al. Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech Model Mechanobiol. 2012;11(5):609–30.

    Google Scholar 

  144. Khalafvand SS, Ng EYK, Zhong L, et al. Fluid-dynamics modelling of the human left ventricle with dynamic mesh for normal and myocardial infarction; preliminary study. Comput Biol Med. 2012;42:863–70.

    Google Scholar 

  145. Bachner-Hinenzon N, Ertracht O, Malka A, et al. Layer-specific strain analysis: investigation of regional deformations in a rat model of acute versus chronic myocardial infarction. Am J Physiol Heart Circ Physiol. 2012;303:H549–H558558.

    Google Scholar 

  146. Torres WM, Jacobs J, Doviak H, et al. Regional and temporal changes in left ventricular strain and stiffness in a porcine model of myocardial infarction. Am J Physiol Heart Circ Physiol. 2018;315:H958–H967.

    Google Scholar 

  147. Dabiri Y, Sack KL, Rebelo N, et al. Method for calibration of left ventricle material properties using three-dimensional echocardiography endocardial strains. ASME J Biomech Eng. 2019;141(9):091007–1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenguang Li.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W. Biomechanics of infarcted left ventricle: a review of modelling. Biomed. Eng. Lett. 10, 387–417 (2020). https://doi.org/10.1007/s13534-020-00159-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-020-00159-4

Keywords

Navigation