Skip to main content
Log in

Sensing and actuation technologies for smart socket prostheses

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

The socket is the most critical part of every lower-limb prosthetic system, since it serves as the interfacial component that connects the residual limb with the artificial system. However, many amputees abandon their socket prostheses due to the high-level of discomfort caused by the poor interaction between the socket and residual limb. In general, socket prosthesis performance is determined by three main factors, namely, residual limb-socket interfacial stress, volume fluctuation of the residual limb, and temperature. This review paper summarizes the various sensing and actuation solutions that have been proposed for improving socket performance and for realizing next-generation socket prostheses. The working principles of different sensors and how they have been tested or used for monitoring the socket interface are discussed. Furthermore, various actuation methods that have been proposed for actively modifying and improving the socket interface are also reviewed. Through the continued development and integration of these sensing and actuation technologies, the long-term vision is to realize smart socket prostheses. Such smart socket systems will not only function as a socket prosthesis but will also be able to sense parameters that cause amputee discomfort and self-adjust to optimize its fit, function, and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Owings MF, Kozak LJ. Ambulatory and inpatient procedures in the United States, 1996. Vital Health Stat. 1998;13(139):1–119.

    Google Scholar 

  2. Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabilit. 2008;89(3):422–9.

    Article  Google Scholar 

  3. Stinner DJ, Burns TC, Kirk KL, Scoville CR, Ficke JR, Hsu JR. Prevalence of late amputations during the current conflicts in Afghanistan and Iraq. Mil Med. 2010;175(12):1027–9.

    Article  Google Scholar 

  4. Raichle KA, Hanley MA, Molton I, Kadel NJ, Campbell K, Phelps E, Ehde D, Smith DG. Prosthesis use in persons with lower and upper-limb amputation. J Rehabil Res Dev. 2008;45(7):961–72.

    Article  Google Scholar 

  5. Akarsu S, Tekin L, Safaz I, Göktepe AS, Yazicioğlu K. Quality of life and functionality after lower limb amputations: comparison between uni- vs. bilateral amputee patients. Prosthet Orthot Int. 2013;37(1):9–13.

    Article  Google Scholar 

  6. Reiber GE, McFarland LV, Hubbard S, Maynard C, Blough DK, Gambel JM, Smith DG. Servicemembers and veterans with major traumatic limb loss from Vietnam war and OIF/OEF conflicts: survey methods, participants, and summary findings. J Rehabil Res Dev. 2010;47(4):275–98.

    Article  Google Scholar 

  7. Roffman CE, Buchanan J, Allison GT. Predictors of non-use of prostheses by people with lower limb amputation after discharge from rehabilitation: development and validation of clinical prediction rules. J Physiother. 2014;60(4):224–31.

    Article  Google Scholar 

  8. Gailey R, McFarland LV, Cooper RA, Czerniecki J, Gambel JM, Hubbard S, Maynard C, Smith DG, Raya M, Reiber GE. Unilateral lower-limb loss: prosthetic device use and functional outcomes in servicemembers from Vietnam war and OIF/OEF conflicts. J Rehabil Res Dev. 2010;47(4):317–32.

    Article  Google Scholar 

  9. Paternò L, Ibrahimi M, Gruppioni E, Menciassi A, Ricotti L. Sockets for limb prostheses: a review of existing technologies and open challenges. IEEE Trans Biomed Eng. 2018;65(9):1996–2010.

    Article  Google Scholar 

  10. Durmus D, Safaz I, Adıgüzel E, Uran A, Sarısoy G, Goktepe AS, Tan AK. The relationship between prosthesis use, phantom pain and psychiatric symptoms in male traumatic limb amputees. Compr Psychiatry. 2015;1(59):45–53.

    Article  Google Scholar 

  11. Chamlian TR. Use of prostheses in lower limb amputee patients due to peripheral arterial disease. Einstein (São Paulo). 2014;12(4):440–6.

    Article  Google Scholar 

  12. Pasquina CP, Carvalho AJ, Sheehan TP. Ethics in rehabilitation: access to prosthetics and quality care following amputation. AMA J Ethics. 2015;17(6):535–46.

    Article  Google Scholar 

  13. Pinzur MS, Cox W, Kaiser J, Morris T, Patwardhan A, Vrbos L. The effect of prosthetic alignment on relative limb loading in persons with trans-tibial amputation: a preliminary report. J Rehabil Res Dev. 1995;32(4):373–7.

    Google Scholar 

  14. Schmalz T, Blumentritt S, Jarasch R. Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture. 2002;16(3):255–63.

    Article  Google Scholar 

  15. Al-Fakih E, Osman NA, Adikan FM. Techniques for interface stress measurements within prosthetic sockets of transtibial amputees: a review of the past 50 years of research. Sensors. 2016;16(7):1119.

    Article  Google Scholar 

  16. Gaine WJ, Smart C, Bransby-Zachary M. Upper limb traumatic amputees: review of prosthetic use. J Hand Surg. 1997;22(1):73–6.

    Article  Google Scholar 

  17. Petron A, Duval JF, Herr H. Multi-indenter device for in vivo biomechanical tissue measurement. IEEE Trans Neural Syst Rehabil Eng. 2016;25(5):4326–435.

    Google Scholar 

  18. Pirouzi G, Osman A, Azuan N, Oshkour A, Ali S, Gholizadeh H, Abas WW. Development of an air pneumatic suspension system for transtibial prostheses. Sensors. 2014;14(9):16754–65.

    Article  Google Scholar 

  19. Wang L, Loh KJ. Nanocomposite fabric sensors for socket prostheses and pressure ulcer prevention. In: Conf proc 7th world conference on structural control and monitoring. 2018.

  20. Meulenbelt HE, Geertzen JH, Jonkman MF, Dijkstra PU. Determinants of skin problems of the stump in lower-limb amputees. Arch Phys Med Rehabil. 2009;90(1):74–81.

    Article  Google Scholar 

  21. Levy SW. Skin problems of the leg amputee. Prosthet Orthot Int. 1980;4(1):37–44.

    Article  Google Scholar 

  22. Lyon CC, Kulkarni J, Zimersonc E, Ross EV, Beck MH. Skin disorders in amputees. J Am Acad Dermatol. 2000;42(3):501–7.

    Article  Google Scholar 

  23. Mak AF, Zhang M, Boone DA. State-of-the-art research in lower-limb prosthetic biomechanics-socket interface: a review. J Rehabil Res Dev. 2001;38(2):161–74.

    Google Scholar 

  24. Ali S, Osman NA, Eshraghi A, Gholizadeh H, Abas WA. Interface pressure in transtibial socket during ascent and descent on stairs and its effect on patient satisfaction. Clin Biomech. 2013;28(9–10):994–9.

    Article  Google Scholar 

  25. Lee WC, Zhang M, Mak AF. Regional differences in pain threshold and tolerance of the transtibial residual limb: including the effects of age and interface material. Arch Phys Med Rehabil. 2005;86(4):641–9.

    Article  Google Scholar 

  26. Colombo G, Facoetti G, Rizzi C. Automatic below-knee prosthesis socket design: a preliminary approach. In: Conf proc international conference on digital human modeling and applications in health, safety, ergonomics and risk management. 2016; pp. 75–81.

  27. Ogawa A, Obinata G, Hase K, Dutta A, Nakagawa M. Design of lower limb prosthesis with contact pressure adjustment by MR fluid. In: Conf proc 30th annual international conference of the ieee engineering in medicine and biology society. 2008.

  28. Kahle JT, Highsmith MJ. Transfemoral sockets with vacuum-assisted suspension comparison of hip kinematics, socket position, contact pressure, and preference: ischial containment versus brimless. J Rehabil Res Dev. 2013;50(9):1241–52.

    Article  Google Scholar 

  29. Lu N, Lu C, Yang S, Rogers J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv Funct Mater. 2012;22(19):4044–50.

    Article  Google Scholar 

  30. Tiwana MI, Redmond SJ, Lovell NH. A review of tactile sensing technologies with applications in biomedical engineering. Sens Actuators A Phys. 2012;179:17–31.

    Article  Google Scholar 

  31. Appoldt F, Bennett L, Contini R. Stump-socket pressure in lower extremity prostheses. J Biomech. 1968;1(4):247–57.

    Article  Google Scholar 

  32. Appoldt FA, Bennett L, Contini R. Tangential pressure measurements in above-knee suction sockets. Bull Prosthet Res. 1970;10(13):70–86.

    Google Scholar 

  33. Burgess EM, Moore AJ. Physiological suspension: an interim report. Bull Prosthet Res. 1977;16(2):58–70.

    Google Scholar 

  34. Leavitt LA, Peterson CR, Canzoneri J, Pza R, Muilenburg AL, Rhyne VT. Quantitative method to measure the relationship between prosthetic gait and the forces produced at the stump-socket interface. Am J Phys Med Rehabil. 1970;49(3):192–203.

    Google Scholar 

  35. Leavitt LA, Zuniga EN, Calvert JC, Canzoneri J, Peterson CR. Gait analysis and tissue-socket interface pressures in above-knee amputees. South Med J. 1972;65(10):1197.

    Article  Google Scholar 

  36. Pearson JR, Holmgren G, March L, Oberg K. Pressures in critical regions of the below-knee patellar-tendon-bearing prosthesis. Bull Prosthet Res. 1973;10(19):52–76.

    Google Scholar 

  37. Rae JW, Cockrell JL. Interface pressure and stress distribution in prosthetic fitting. Bull Prosthet Res. 1971;10(15):64–111.

    Google Scholar 

  38. Sonck WA, Cockrell JL, Koepke GH. Effect of liner materials on interface pressures in below-knee prostheses. Arch Phys Med Rehabil. 1970;51(11):666–9.

    Google Scholar 

  39. Winarski DJ, Pearson JR. Least-squares matrix correlations between stump stresses and prosthesis loads for below-knee amputees. J Biomech Eng. 1987;109(3):238–46.

    Article  Google Scholar 

  40. Dickinson AS, Steer JW, Worsley PR. Finite element analysis of the amputated lower limb: a systematic review and recommendations. Med Eng Phys. 2017;43:1–8.

    Article  Google Scholar 

  41. Zhang M, Turner-Smith A, Tanner A, Roberts V. Clinical investigation of the pressure and shear stress on the trans-tibial stump with a prosthesis. Med Eng Phys. 1998;20:188–98.

    Article  Google Scholar 

  42. Sanders JE, Daly CH. Measurement of stresses in three orthogonal directions at the residual limb-prosthetic socket interface. IEEE Trans Rehabil Eng. 1993;1(2):79–85.

    Article  Google Scholar 

  43. Dou P, Jia X, Suo S, Wang R, Zhang M. Pressure distribution at the stump/socket interface in transtibial amputees during walking on stairs, slope and non-flat road. Clin Biomech. 2006;21(10):1067–73.

    Article  Google Scholar 

  44. Hafner BJ, Sanders JE. Considerations for development of sensing and monitoring tools to facilitate treatment and care of persons with lower limb loss. J Rehabil Res Dev. 2014;51(1):1–14.

    Article  Google Scholar 

  45. Osman NA, Spence WD, Solomonidis SE, Paul JP, Weir AM. The patellar tendon bar! Is it a necessary feature? Med Eng Phys. 2010;32(7):760–5.

    Article  Google Scholar 

  46. Sanders JE, Lain D, Dralle AJ, Okumura R. Interface pressures and shear stresses at thirteen socket sites on two persons with transtibial amputation. J Rehabil Res Dev. 1997;1(34):19–43.

    Google Scholar 

  47. Sanders JE, Zachariah SG, Jacobsen AK, Fergason JR. Changes in interface pressures and shear stresses over time on trans-tibial amputee subjects ambulating with prosthetic limbs: comparison of diurnal and six-month differences. J Biomech. 2005;38(8):1566–73.

    Article  Google Scholar 

  48. Parmar S, Khodasevych I, Troynikov O. Evaluation of flexible force sensors for pressure monitoring in treatment of chronic venous disorders. Sensors. 2017;17(8):1923.

    Article  Google Scholar 

  49. Kane BJ, Cutkosky MR, Kovacs GT. A traction stress sensor array for use in high-resolution robotic tactile imaging. J Microelectromech Syst. 2000;9(4):425–34.

  50. Schofield JS, Evans KR, Hebert JS, Marasco PD, Carey JP. The effect of biomechanical variables on force sensitive resistor error: implications for calibration and improved accuracy. J Biomech. 2016;49(5):786–92.

    Article  Google Scholar 

  51. Fraden J. Handbook of modern sensors. Physics, design and applications. San Diego: Springer; 2004.

    Google Scholar 

  52. Barlian AA, Park WT, Mallon JR, Rastegar AJ, Pruitt BL. Semiconductor piezoresistance for microsystems. Proc IEEE. 2009;97(3):513–52.

    Article  Google Scholar 

  53. Saccomandi P, Schena E, Oddo CM, Zollo L, Silvestri S, Guglielmelli E. Microfabricated tactile sensors for biomedical applications: a review. Biosensors. 2014;4(4):422–48.

    Article  Google Scholar 

  54. Dabling JG, Filatov A, Wheeler JW. Static and cyclic performance evaluation of sensors for human interface pressure measurement. In: Conf proc annual international conference of the IEEE engineering in medicine and biology society. 2012; pp. 162–165.

  55. Hollinger A, Wanderley MM. Evaluation of commercial force-sensing resistors. In: Conf proc international conference on new interfaces for musical expression. 2006.

  56. Interlink Electronics Inc. FSR 400 series data sheet. https://www.interlinkelectronics.com/datasheets/Datasheet_FSR.pdf. Accessed 17 Jul 2019.

  57. IEE International Electronics & Engineering. Specification sheet for standard LuSense sensors of the PS3 family. Revision 0, March 29, 2001.

  58. Tekscan Inc. https://www.tekscan.com/products-solutions/force-sensors/a301. Accessed 3 Jul 2019.

  59. Vecchi F, Freschi C, Micera S, Sabatini A, Dario P, Sacchetti R. Experimental evaluation of two commercial force sensors for applications in biomechanics and motor control. In: Conf proc 5th annual conference of the international functional electrical stimulation society. 2000.

  60. Ruda EM, Sanchez OFA, Mejia JCH, Gomez SJ, Flautero OIC. Design process of mechatronic device for measuring the stump stresses on a lower limb amputee. In: Conf proc 22nd international congress of mechanical engineering (COBEM 2013). 2013; pp. 4620–4628.

  61. Polliack A, Landsberger S, McNeal D, Sieh R, Craig D, Ayyappa E. Socket measurement systems perform under pressure. Biomechanics. 1999;6:71–80.

    Google Scholar 

  62. Polliack AA, Sieh RC, Craig DD, Landsberger S, McNeil DR, Ayyappa E. Scientific validation of two commercial pressure sensor systems for prosthetic socket fit. Prosthet Orthot Int. 2000;24(1):63–73.

    Article  Google Scholar 

  63. Almassri AM, Hasan W, Ahmad S, Ishak A, Ghazali A, Talib D, Wada C. Pressure sensor: state of the art, design, and application for robotic hand. J Sens. 2015. https://doi.org/10.1155/2015/846487.

  64. Luo ZP, Berglund LJ, An KN. Validation of f-scan pressure sensor system: a technical note. J Rehabil Res Dev. 1998;35(2):186–91.

    Google Scholar 

  65. Lai CH, Li-Tsang CW. Validation of the Pliance x system in measuring interface pressure generated by pressure garment. Burns. 2009;35(6):845–51.

    Article  Google Scholar 

  66. Safari MR, Tafti N, Aminian G. Socket interface pressure and amputee reported outcomes for comfortable and uncomfortable conditions of patellar tendon bearing socket: a pilot study. Assist Technol. 2015;27(1):24–31.

    Article  Google Scholar 

  67. Tiwana MI, Shashank A, Redmond SJ, Lovell NH. Characterization of a capacitive tactile shear sensor for application in robotic and upper limb prostheses. Sens Actuators A Phys. 2011;165(2):164–72.

    Article  Google Scholar 

  68. Wolf SI, Alimusaj M, Fradet L, Siegel J, Braatz F. Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot. Clin Biomech. 2009;24(10):860–5.

    Article  Google Scholar 

  69. Meier RH, Meeks ED, Herman RM. Stump-socket fit of below-knee prostheses: comparison of three methods of measurement. Arch Phys Med Rehabil. 1973;54(12):553–8.

    Google Scholar 

  70. Polliack A, Craig D, Sieh R, Landsberger S, McNeal D. Laboratory and clinical tests of a prototype pressure sensor for clinical assessment of prosthetic socket fit. Prosthet Orthot Int. 2002;26(1):23–34.

    Article  Google Scholar 

  71. Sengeh DM, Herr H. A variable-impedance prosthetic socket for a transtibial amputee designed from magnetic resonance imaging data. J Prosthet Orthot. 2013;25(3):129–37.

    Article  Google Scholar 

  72. Ghoseiri K, Safari MR. Prevalence of heat and perspiration discomfort inside prostheses: literature review. J Rehabil Res Dev. 2014;51(6):855–68.

    Article  Google Scholar 

  73. Williams RB, Porter D, Roberts VC, Regan JF. Triaxial force transducer for investigating stresses at the stump/socket interface. Med Biol Eng Comput. 1992;30(1):89–96.

    Article  Google Scholar 

  74. Razian MA, Pepper MG. Design, development, and characteristics of an in-shoe triaxial pressure measurement transducer utilizing a single element of piezoelectric copolymer film. IEEE Trans Neural Syst Rehabil Eng. 2003;11(3):288–93.

    Article  Google Scholar 

  75. Rocha RP, Gomes JM, Carmo JP, Silva AF, Correia JH. Low-cost/high-reproducibility flexible sensor based on photonics for strain measuring. Opt Laser Technol. 2014;56:278–84.

    Article  Google Scholar 

  76. Fresvig T, Ludvigsen P, Steen H, Reikerås O. Fibre optic bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone. Med Eng Phys. 2008;30(1):104–8.

    Article  Google Scholar 

  77. Yu Q, Zhou X. Pressure sensor based on the fiber-optic extrinsic fabry-perot interferometer. Photon Sens. 2011;1(1):72–83.

    Article  MathSciNet  Google Scholar 

  78. Liu X, Iordachita II, He X, Taylor RH, Kang JU. Miniature fiber-optic force sensor based on low-coherence fabry-pérot interferometry for vitreoretinal microsurgery. Biomed Opt Express. 2012;3(5):1062–76.

    Article  Google Scholar 

  79. Bartelt H, Elsmann T, Habisreuther T, Schuster K, Rothhardt M. Optical bragg grating sensor fibers for ultra-high temperature applications. In: Conf proc 5th Asia pacific optical sensors conference. 2015.

  80. Gao R, Jiang Y, Ding W, Wang Z, Liu D. Filmed extrinsic fabry–perot interferometric sensors for the measurement of arbitrary refractive index of liquid. Sens Actuators B Chem. 2013;177:924–8.

    Article  Google Scholar 

  81. Sante RD. Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications. Sensors. 2015;15(8):18666–713.

    Article  Google Scholar 

  82. Mihailov SJ. Fiber Bragg grating sensors for harsh environments. Sensors. 2012;12(2):1898–918.

    Article  Google Scholar 

  83. Kanellos GT, Papaioannou G, Tsiokos D, Mitrogiannis C, Nianios G, Pleros N. Two dimensional polymer-embedded quasi-distributed FBG pressure sensor for biomedical applications. Opt Express. 2010;18(1):179–86.

    Article  Google Scholar 

  84. Kanellos GT, Tsiokos D, Pleros N, Papaioannou G, Childs P, Pissadakis S. Enhanced durability FBG-based sensor pads for biomedical applications as human–machine interface surfaces. In: Conf proc international workshop on biophotonics. 2011.

  85. Al-Fakih EA, Osman NA, Adikan FR, Eshraghi A, Jahanshahi P. Development and validation of fiber Bragg grating sensing pad for interface pressure measurements within prosthetic sockets. IEEE Sens J. 2015;16(4):965–74.

    Article  Google Scholar 

  86. Al-Fakih E, Osman N, Eshraghi A, Adikan F. The capability of fiber Bragg grating sensors to measure amputees’ trans-tibial stump/socket interface pressures. Sensors. 2013;13(8):10348–57.

    Article  Google Scholar 

  87. Zhang ZF, Tao XM, Zhang HP, Zhu B. Soft fiber optic sensors for precision measurement of shear stress and pressure. IEEE Sens J. 2013;13(5):1478–82.

    Article  Google Scholar 

  88. Donati M, Vitiello N, Rossi SD, Lenzi T, Crea S, Persichetti A, Giovacchini F, Koopman B, Podobnik J, Munih M, Carrozza M. A flexible sensor technology for the distributed measurement of interaction pressure. Sensors. 2013;13(1):1021–45.

    Article  Google Scholar 

  89. Rossi SD, Lenzi T, Vitiello N, Donati M, Persichetti A, Giovacchini F, Vecchi F, Carrozza MC. Development of an in-shoe pressure-sensitive device for gait analysis. In: Conf proc international conference of the IEEE engineering in medicine and biology society, EMBC. 2011; pp. 5637–5640.

  90. Missinne J, Bosman E, Hoe BV, Verplancke R, Steenberge GV, Kalathimekkad S, Daele PV, Vanfleteren J. Two axis optoelectronic tactile shear stress sensor. Sens Actuators A Phys. 2012;186:63–8.

    Article  Google Scholar 

  91. Lincoln LS, Quigley M, Rohrer B, Salisbury C, Wheeler J. An optical 3d force sensor for biomedical devices. In: Conf Proc 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob). 2012; pp. 1500–1505.

  92. Cutkosky MR, Howe RD, Provancher WR. Force and tactile sensors. Berlin: Springer; 2008.

    Book  Google Scholar 

  93. Yousef H, Boukallel M, Althoefer K. Tactile sensing for dexterous in-hand manipulation in robotics—a review. Sens Actuators A Phys. 2011;167(2):171–87.

    Article  Google Scholar 

  94. Baars EC, Geertzen JH. Literature review of the possible advantages of silicon liner socket use in trans-tibial prostheses. Prosthet Orthot Int. 2005;29(1):27–37.

    Article  Google Scholar 

  95. Peery TJ, Ledoux WR, Klute GK. Residual-limb skin temperature in transtibial sockets. J Rehabil Res Dev. 2005;42(2):147–54.

    Article  Google Scholar 

  96. Klute GK, Rowe GI, Mamishev AV, Ledoux WR. The thermal conductivity of prosthetic sockets and liners. Prosthet Orthot Int. 2007;31(3):292–9.

    Article  Google Scholar 

  97. Peery JT, Ledoux WR, Klute GK. Residual-limb skin temperature in transtibial sockets. J Rehabil Res Dev. 2005;42(2):147–54.

    Article  Google Scholar 

  98. Huff EA, Ledoux WR, Berge JS, Klute GK. Measuring residual limb skin temperatures at the skin-prosthesis interface. JPO J Prosthet Orthot. 2008;20(4):170–3.

    Article  Google Scholar 

  99. Caldwell R, Fatone S. Technique for perforating a prosthetic liner to expel sweat. J Prosthet Orthot. 2017;29(3):145–7.

    Article  Google Scholar 

  100. Bertels T, Kettwig T, IPot. Breathable liner for transradial prostheses. In: Conf proc myoelectric symposium. 2011.

  101. Wernke MM, Schroeder RM, Kelley CT, Denune JA, Colvin JM. Smarttemp prosthetic liner significantly reduces residual limb temperature and perspiration. JPO J Prosthet Orthot. 2015;27(4):134–9.

    Article  Google Scholar 

  102. Han Y, Liu F, Zhao L, Zhe J. An automatic and portable prosthetic cooling device with high cooling capacity based on phase change. Appl Therm Eng. 2016;104:243–8.

    Article  Google Scholar 

  103. Ghoseiri K, Zheng YP, Leung AK, Rahgozar M, Aminian G, Lee TH, Safari MR. Temperature measurement and control system for transtibial prostheses: functional evaluation. Assist Technol. 2018;30(1):16–23.

    Article  Google Scholar 

  104. Han Y, Liu F, Dowd G, Zhe J. A thermal management device for a lower-limb prosthesis. Appl Therm Eng. 2015;82:246–52.

    Article  Google Scholar 

  105. Webber CM, Davis BL. Design of a novel prosthetic socket: assessment of the thermal performance. J Biomech. 2015;48(7):1294–9.

    Article  Google Scholar 

  106. Zhe J, Han Y. Low-power method and device for cooling prosthetic limb socket based on phase change. University of Akron. United States Patent 9,814,607. 2017.

  107. King C. Vacuum assisted heat/perspiration removal system and limb volume management for prosthetic device. United States Patent 11/518,064. 2007.

  108. King C. Airflow regulation system for artificial limb and associated methods. United States Patent 8,475,537. 2013.

  109. Board WJ, Street GM, Caspers C. A comparison of trans-tibial amputee suction and vacuum socket conditions. Prosthet Orthot Int. 2001;25(3):202–9.

    Article  Google Scholar 

  110. Lilja M, Johansson S, Öberg T. Relaxed versus activated stump muscles during casting for trans-tibial prostheses. Prosthet Orthot Int. 1999;23(1):13–20.

    Article  Google Scholar 

  111. Fernie GR, Holliday PJ, Lobb RJ. An instrument for monitoring stump oedema and shrinkage in amputees. Prosthet Orthot Int. 1978;2(2):69–72.

    Article  Google Scholar 

  112. Commean PK, Smith EK, Cheverud JM, Vannier MW. Precision of surface measurements for below-knee residua. Arch Phys Med Rehabil. 1996;77(5):477–86.

    Article  Google Scholar 

  113. Schreiner RE, Sanders JE. A silhouetting shape sensor for the residual limb of a below-knee amputee. IEEE Trans Rehabil Eng. 1995;3(3):242–53.

    Article  Google Scholar 

  114. Krouskop TA, Dougherty D, Yalcinkaya MI, Muilenberg A. Measuring the shape and volume of an above-knee stump. Prosthet Orthot Int. 1988;12(3):136–42.

    Article  Google Scholar 

  115. Murka CPP. 3-d imaging of residual limbs using ultrasound. Development. 1997;34(3):269–78.

    Google Scholar 

  116. Smith KE, Commean PK, Vannier MW. Residual-limb shape change: three-dimensional ct scan measurement and depiction in vivo. Radiology. 1996;200(3):843–50.

    Article  Google Scholar 

  117. Johansson S, Oberg T. Accuracy and precision of volumetric determinations using two commercial cad systems for prosthetics: a technical note. J Rehabil Res Dev. 1998;35(1):27.

    Google Scholar 

  118. Buis AW, Condon B, Brennan D, McHugh B, Hadley D. Magnetic resonance imaging technology in transtibial socket research: a pilot study. J Rehabil Res Dev. 2006;43(7):883–90.

    Article  Google Scholar 

  119. Sanders JE, Rogers EL, Abrahamson DC. Assessment of residual-limb volume change using bioimpedence. J Rehabil Res Dev. 2007;44(4):525–36.

    Article  Google Scholar 

  120. Sanders JE, Cassisi DV. Mechanical performance of inflatable inserts used in limb prosthetics. J Rehabil Res Dev. 2001;38(4):365–74.

    Google Scholar 

  121. Greenwald RM, Dean RC, Board WJ. Volume management: smart variable geometry socket (SVGS) technology for lower-limb prostheses. J Prosthet Orthot. 2003;15(3):107–12.

    Article  Google Scholar 

  122. Carrigan W, Nothnagle C, Savant P, Gao F, Wijesundara MB. Pneumatic actuator inserts for interface pressure mapping and fit improvement in lower extremity prosthetics. In: Conf proc 6th IEEE international conference on biomedical robotics and biomechatronics (BioRob). 2016; pp. 574–579.

  123. Volder MD, and Reynaerts D. Pneumatic and hydraulic microactuators: A Review Journal of Micromechanics and Microengineering. 2010; 20(4): 043001.

  124. Mercier M, Shirley C, Stafford S, Hitzke S, Byju A, Kevorkian C, Madigan M, Philen M. Fluidic flexible matrix composites for volume management in prosthetic sockets. In: Conf proc ASME 2014 conference on smart materials, adaptive structures and intelligent systems. 2014; pp. 1–7.

  125. Phillips SL, Resnik L, Latlief GA. Use of a dynamic load strap in adjustable anatomical suspension for transradial amputations. In: Conf proc myoelectric symposium. 2011.

  126. Nakamura A, Abe N. Banner advertisement selecting method. NEC Corp. United States Patent 6,591,248. 2003.

  127. Wilson AB, Schuch CM, Nitschke RO. A variable volume socket for below knee prostheses. Clin Prosthet Orthot. 1987;11(1):10–1.

    Article  Google Scholar 

  128. Johnson A, Lee J, Veatch B. Designing for affordability, application, and performance: the international transradial adjustable limb prosthesis. PO J Prosthet Orthot. 2012;24(2):80–5.

    Article  Google Scholar 

  129. Kahle JT, Klenow TD, Highsmith MJ. Comparative effectiveness of an adjustable transfemoral prosthetic interface accommodating volume fluctuation: case study. Technol Innov. 2016;18(2–3):175–83.

    Article  Google Scholar 

  130. DeLisa JA. Gait analysis in the science of rehabilitation. Collingdale: Diane Publishing; 1998.

    Google Scholar 

  131. Koktas NS, Yalabik N, Yavuzer G. Combining neural networks for gait classification. In: Conf proc iberoamerican congress on pattern recognition. 2006; pp. 381–388.

  132. Morris SJ, Paradiso JA. Shoe-integrated sensor system for wireless gait analysis and real-time feedback. In: Conf proc second joint 24th annual conference and the annual fall meeting of the biomedical engineering society. 2002; pp. 2468–2469.

  133. Smith BT, Coiro DJ, Finson R, Betz RR, McCarthy J. Evaluation of force-sensing resistors for gait event detection to trigger electrical stimulation to improve walking in the child with cerebral palsy. IEEE Trans Neural Syst Rehabil Eng. 2002;10(1):22–9.

    Article  Google Scholar 

  134. Holmberg WS. An autonomous control system for a prosthetic foot ankle. IFAC Proc Vol. 2006;39(16):856–61.

    Article  Google Scholar 

  135. Williamson R, Andrews BJ. Gait event detection for fes using accelerometers and supervised machine learning. IEEE Trans Rehabil Eng. 2009;8(3):312–9.

    Article  Google Scholar 

  136. Chan HK, Zheng H, Wang H, Gawley R, Yang M, Sterritt R. Feasibility study on iphone accelerometer for gait detection. In: Conf proc 5th international conference on pervasive computing technologies for healthcare (PervasiveHealth) and workshops. 2011; pp. 184–187.

  137. Aminian K, Najafi B, Büla C, Leyvraz PF, Robert P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J Biomech. 2002;35(5):689–99.

    Article  Google Scholar 

  138. Tong K, Granat MH. A practical gait analysis system using gyroscopes. Med Eng Phys. 1999;21(2):87–94.

    Article  Google Scholar 

  139. Pappas IP, Popovic MR, Keller T, Dietz V, Morari M. A reliable gait phase detection system. IEEE Trans Neural Syst Rehabil Eng. 2001;9(2):113–25.

    Article  Google Scholar 

  140. Erikson U, Lemperg R. Roentgenological study of movements of the amputation stump within the prosthesis socket in below-knee amputees fitted with a ptb prosthesis. Acta Orthop Scand. 1969;40(4):520–6.

    Article  Google Scholar 

  141. Grevsten S, Erikson U. A roentgenological study of the stump—socket contact and skeletal displacement in the ptb-suction prosthesis. Upsala J Med Sci. 1975;80(1):49–57.

    Article  Google Scholar 

  142. Lilja M, Johansson T, Öberg T. Movement of the tibial end in a ptb prosthesis socket: a sagittal x-ray study of the PTB prosthesis. Prosthet Orthot Int. 1993;17(1):21–6.

    Article  Google Scholar 

  143. Long IA. Normal shape-normal alignment (NSNA) above-knee prosthesis. Clin Prosthet Orthot. 1985;9(4):9–14.

    Google Scholar 

  144. Mayfield GW, Scanlon JA, Long I. A new look to and through the above-knee socket. Orthop Trans. 1977;1(1):95.

    Google Scholar 

  145. Sabolich J. Contoured adducted trachanteric-controlled alignment method (CAT-CAM): introduction and basic principles. Clin Prosth Orthos. 1985;9:15–26.

    Google Scholar 

  146. Murray KD, Convery P. The calibration of ultrasound transducers used to monitor motion of the residual femur within a trans-femoral socket during gait. Prosthet Orthot Int. 2000;24(1):55–62.

    Article  Google Scholar 

  147. Ward S, Wiedemann L, Stinear C, Stinear J, McDaid A. The influence of the re-link trainer on gait symmetry in healthy adults. In: Conf proc international conference on rehabilitation robotics (ICORR). 2017; pp. 276–282.

  148. McDaid A, Tsoi YH, Xie S. MIMO actuator force control of a parallel robot for ankle rehabilitation. Interdiscip Mech. London: John Wiley & Sons, Inc; 2013; pp. 163–208.

  149. Kora K, Stinear J, McDaid A. Design, analysis, and optimization of an acute stroke gait rehabilitation device. J Med Devices. 2017;11(1):014503.

    Article  Google Scholar 

  150. Cutti A, Perego P, Fusca M, Sacchetti R, Andreoni G. Assessment of lower limb prosthesis through wearable sensors and thermography. Sensors. 2014;14(3):5041–55.

    Article  Google Scholar 

  151. Levy SW. Skin problems of the leg amputee. Prosthet Orthot Int. 1980;4(1):37–44.

    Article  Google Scholar 

  152. Rajbhandari SM, Sutton M, Davies C, Tesfaye S, Ward JD. ‘Sausage toe’: a reliable sign of underlying osteomyelitis. Diabet Med. 2000;17:174–7.

    Article  Google Scholar 

  153. Grayson ML, Gibbons WG, Balogh K, Levin E, Karchmer AW. Probing to bone in infected pedal ulcers: a clinical sign of underlying osteomyelitis in diabetic patients. JAMA. 1995;273(9):721–3.

    Article  Google Scholar 

  154. Croll SD, Nicholas G, Osborne MA, Wasser TE, Jones S. Role of magnetic resonance imaging in the diagnosis of osteomyelitis in diabetic foot infections. J Vasc Surg. 1996;24(2):266–70.

    Article  Google Scholar 

  155. Kaleta JL, Fleischli JW, Reilly CH. The diagnosis of osteomyelitis in diabetes using erythrocyte sedimentation rate: a pilot study. J Am Podiatr Med Assoc. 2001;91(9):445–50.

    Article  Google Scholar 

  156. Crerand S, Dolan M, Laing P, Bird M, Smith LM, Klenerman L. Diagnosis of osteomyelitis in neuropathic foot ulcers. J Bone Joint Surg. 1996;78(1):51–5.

    Article  Google Scholar 

  157. Yuh WT, Corson JD, Baraniewski HM, Rezai K, Shamma AR, Kathol MH, Sato Y, El-Khoury GY, Hawes DR, Platz CE. Osteomyelitis of the foot in diabetic patients: evaluation with plain film, 99mtc-mdp bone scintigraphy, and mr imaging. Am J Roentgenol. 1989;152(4):795–800.

    Article  Google Scholar 

  158. Henrot P, Stines J, Walter F, Martinet N, Paysant J, Blum A. Imaging of the painful lower limb stump. Radiographics. 2000;20(suppl_1):S219–35.

    Article  Google Scholar 

  159. Baumgartner R, Langlotz M. Amputee stump radiology. Prosthet Orthot Int. 1980;4(2):97–100.

    Article  Google Scholar 

  160. Boutin RD, Pathria MN, Resnick D. Disorders in the stumps of amputee patients: MR imaging. Am J Roentgenol. 1998;17(2):497–501.

    Article  Google Scholar 

  161. Croll SD, Nicholas GG, Osborne MA, Wasser TE, Jones S. Role of magnetic resonance imaging in the diagnosis of osteomyelitis in diabetic foot infections. J Vasc Surg. 1996;24(2):266–70.

    Article  Google Scholar 

  162. Marcus CD, Ladam-Marcus VJ, Leone J, Malgrange D, Bonnet-Gausserand FM, Menanteau BP. Mr imaging of osteomyelitis and neuropathic osteoarthropathy in the feet of diabetics. Radiographics. 1996;16(6):1337–48.

    Article  Google Scholar 

  163. Dutronc H, Gobet A, Dauchy FA, Klotz R, Cazanave C, Garcia G, Lafarie-Castet S, Fabre T, Dupon M. Stump infections after major lower-limb amputation: a 10-year retrospective study. Médecine et Maladies Infectieuses. 2013;43(11–12):456–60.

    Article  Google Scholar 

  164. Zuluaga AF, Galvis W, Jaimes F, Vesga O. Lack of microbiological concordance between bone and non-bone specimens in chronic osteomyelitis: an observational study. BMC Infect Dis. 2002;2(1):8.

    Article  Google Scholar 

  165. Khatri G, Wagner DK, Sohnle PG. Effect of bone biopsy in guiding antimicrobial therapy for osteomyelitis complicating open wounds. Am J Med Sci. 2001;321(6):361–71.

    Article  Google Scholar 

  166. Marples RR, Downing DT, Kligman AM. Control of free fatty acids in human surface lipids by corynebacterium acnes. J Investig Dermatol. 1971;56(2):127–31.

    Article  Google Scholar 

  167. Gupta S, Loh KJ. Noncontact electrical permittivity mapping and pH-sensitive films for osseointegrated prosthesis and infection monitoring. IEEE Trans Med Imaging. 2017;36(11):2193–203.

    Article  Google Scholar 

  168. Wang L, Gupta S, Loh KJ, Koo HS. Distributed pressure sensing using carbon nanotube fabrics. IEEE Sens J. 2016;16(12):4663–4.

    Article  Google Scholar 

  169. Carlson JD, Matthis W, Toscano JR. Smart prosthetics based on magnetorheological fluids. In: Conf proc industrial and commercial applications of smart structures technologies. 2001; 308–316.

  170. Glaessgen E, and Stargel D. The digital twin paradigm for future nasa and us air force vehicles. In: Conf proc 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference. 2012; 1818.

  171. Golbranson LF, Wirta RW, Kuncir EJ, Lieber RL, Oishi C. Volume changes occurring in postoperative below-knee residual limbs. J Rehabil Res Dev. 1988;25(2):11–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Loh.

Ethics declarations

Conflict of interest

Dr. Andrew Pedtke is the co-founder and chief executive officer of LIM Innovations. Prof. Kenneth Loh and Mr. Sumit Gupta declare no conflicts of interest.

Ethical approval

This work did not involve any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Loh, K.J. & Pedtke, A. Sensing and actuation technologies for smart socket prostheses. Biomed. Eng. Lett. 10, 103–118 (2020). https://doi.org/10.1007/s13534-019-00137-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-019-00137-5

Keywords

Navigation