Skip to main content
Log in

Advanced technologies for intuitive control and sensation of prosthetics

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

The Department of Defense, Department of Veterans Affairs and National Institutes of Health have invested significantly in advancing prosthetic technologies over the past 25 years, with the overall intent to improve the function, participation and quality of life of Service Members, Veterans, and all United States Citizens living with limb loss. These investments have contributed to substantial advancements in the control and sensory perception of prosthetic devices over the past decade. While control of motorized prosthetic devices through the use of electromyography has been widely available since the 1980s, this technology is not intuitive. Additionally, these systems do not provide stimulation for sensory perception. Recent research has made significant advancement not only in the intuitive use of electromyography for control but also in the ability to provide relevant meaningful perceptions through various stimulation approaches. While much of this previous work has traditionally focused on those with upper extremity amputation, new developments include advanced bidirectional neuroprostheses that are applicable to both the upper and lower limb amputation. The goal of this review is to examine the state-of-the-science in the areas of intuitive control and sensation of prosthetic devices and to discuss areas of exploration for the future. Current research and development efforts in external systems, implanted systems, surgical approaches, and regenerative approaches will be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet Orthot Int. 2007;31(3):236–57.

    Article  Google Scholar 

  2. Amputee Database. Extremity Trauma and Amputation Center of Excellence. 2018.

  3. Dickey NW. Sustainment and advancement of amputee care. Defense health agency/defense health board falls church United States. 2015.

  4. VSSC Amputee Data Repository Cube. VHA Amputation System of Care. 2019.

  5. Dalley SA, Varol HA, Goldfarb M. A method for the control of multigrasp myoelectric prosthetic hands. IEEE Trans Neural Syst Rehabil Eng. 2012;20(1):58–67.

    Article  Google Scholar 

  6. Smith LH, Kuiken TA, Hargrove LJ. Real-time simultaneous and proportional myoelectric control using intramuscular EMG. J Neural Eng. 2014;11(6):66013–66013.

    Article  Google Scholar 

  7. Bennett DA, Goldfarb M. IMU-based wrist rotation control of a transradial myoelectric prosthesis. IEEE Trans Neural Syst Rehabil Eng. 2018;26(2):419–27.

    Article  Google Scholar 

  8. Huang H, Zhang F, Hargrove LJ, Dou Z, Rogers DR, Englehart KB. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. IEEE Trans Biomed Eng. 2011;58(10):2867–75.

    Article  Google Scholar 

  9. Tkach D, Huang H, Kuiken TA. Study of stability of time-domain features for electromyographic pattern recognition. J Neuroeng Rehabil. 2010;7(1):21–21.

    Article  Google Scholar 

  10. Ray Z, Engeberg ED. Human-inspired reflex to autonomously prevent slip of grasped objects rotated with a prosthetic hand. J Healthc Eng. 2018;2018:1–11.

    Article  Google Scholar 

  11. Gailey A, Artemiadis P, Santello M. Proof of concept of an online EMG-based decoding of hand postures and individual digit forces for prosthetic hand control. Front Neurol. 2017;8:7.

    Article  Google Scholar 

  12. Twardowski MD, Roy SH, Li Z, Contessa P, Luca GD, Kline JC. Motor unit drive: a neural interface for real-time upper limb prosthetic control. J Neural Eng. 2019;16(1):16012.

    Article  Google Scholar 

  13. Spanias JA, Simon A, Finucane SB, Perreault E, Hargrove LJ. Online adaptive neural control of a robotic lower limb prosthesis. J Neural Eng. 2018;15(1):16015.

    Article  Google Scholar 

  14. Yamagami M, Peters KM, Milovanovic I, Kuang I, Yang Z, Lu N, Steele KM. Assessment of dry epidermal electrodes for long-term electromyography measurements. Sensors. 2018;18(4):1269.

    Article  Google Scholar 

  15. Fatone S, Caldwell R. Northwestern University Flexible Subischial Vacuum Socket for persons with transfemoral amputation-part 1: description of technique. Prosthet Orthot Int. 2017;41(3):237–45.

    Article  Google Scholar 

  16. Fatone S, Johnson WB, Tran L, Tucker K, Mowrer C, Caldwell R. Quantification of rectifications for the Northwestern University Flexible Sub-Ischial Vacuum Socket. Prosthet Orthot Int. 2017;41(3):251–7.

    Article  Google Scholar 

  17. Kahle JT, Highsmith MJ. Transfemoral sockets with vacuum-assisted suspension comparison of hip kinematics, socket position, contact pressure, and preference: ischial containment versus brimless. J Rehabil Res Dev. 2013;50(9):1241–52.

    Article  Google Scholar 

  18. Han S, Kim J, Won SM, Ma Y, Kang D, Xie Z, Lee KT, Chung HU, Banks A, Min S, Heo SY, Davies CR, Lee JW, Lee CH, Kim BH, Li K, Zhou Y, Wei C, Feng X, Huang Y, Rogers JA. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci Transl Med. 2018;10(435):eaan4950.

    Article  Google Scholar 

  19. Tran L, Caldwell R, Quigley M, Fatone S. Stakeholder perspectives for possible residual limb monitoring system for persons with lower-limb amputation. Disabil Rehabil. 2018;1–8.

  20. Hargrove LJ, Miller LA, Turner K, Kuiken TA. Myoelectric pattern recognition outperforms direct control for transhumeral amputees with targeted muscle reinnervation: a randomized clinical trial. Sci Rep. 2017;7(1):13840.

    Article  Google Scholar 

  21. Au SK, Bonato P, Herr H. An EMG-position controlled system for an active ankle-foot prosthesis: an initial experimental study. In: 9th international conference on rehabilitation robotics, 2005. ICORR 2005; 2005.

  22. Young AJ, Kuiken TA, Hargrove LJ. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. J Neural Eng. 2014;11(5):56021.

    Article  Google Scholar 

  23. Alcaide-Aguirre RE, Morgenroth DC, Ferris DP. Motor control and learning with lower-limb myoelectric control in amputees. J Rehabil Res Dev. 2013;50(5):687–98.

    Article  Google Scholar 

  24. Huang S, Ferris DP. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface. J Neuroeng Rehabil. 2012;9(1):55–55.

    Article  Google Scholar 

  25. Tian L, Zimmerman B, Akhtar A, Yu KJ, Moore M, Wu J, Larsen RJ, Lee JW, Li J, Liu Y, Metzger B, Qu S, Guo X, Mathewson KE, Fan JA, Cornman J, Fatina M, Xie Z, Ma Y, Zhang J, Zhang Y, Dolcos F, Fabiani M, Gratton G, Bretl T, Hargrove LJ, Braun PV, Huang Y, Rogers JA. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat Biomed Eng. 2019;3(3):194–205.

    Article  Google Scholar 

  26. Dhawan AS, Mukherjee B, Patwardhan S, Akhlaghi N, Levay G, Holley RJ, Joiner WM, Harris-Love M, Sikdar S. Proprioceptive Sonomyographic Control: a novel method of intuitive proportional control of multiple degrees of freedom for upper-extremity amputees. bioRxiv; 2018. p. 387290.

  27. Resnik LJ, Acluche F, Borgia M, Cancio J, Latlief G, Phillips S, Sasson N. EMG pattern recognition compared to foot control of the DEKA Arm. PLoS ONE. 2018;13(10):e0204854.

    Article  Google Scholar 

  28. Marasco PD, Hebert JS, Sensinger JW, Shell CE, Schofield JS, Thumser ZC, Nataraj R, Beckler DT, Dawson MR, Blustein DH, Gill S, Mensh BD, Granja-Vazquez R, Newcomb MD, Carey JP, Orzell BM. Illusory movement perception improves motor control for prosthetic hands. Sci Transl Med. 2018;10(432):eaao6990.

    Article  Google Scholar 

  29. Fan RE, Culjat MO, King C-H, Franco ML, Boryk R, Bisley JW, Dutson E, Grundfest WS. A haptic feedback system for lower-limb prostheses. IEEE Trans Neural Syst Rehabil Eng. 2008;16(3):270–7.

    Article  Google Scholar 

  30. Fan RE, Wottawa C, Mulgaonkar A, Boryk RJ, Sander TC, Wyatt MP, Dutson E, Grundfest WS, Culjat MO. Pilot testing of a haptic feedback rehabilitation system on a lower-limb amputee. In: 2009 ICME international conference on complex medical engineering; 2009.

  31. Sie A, Realmuto J, Rombokas E. A lower limb prosthesis haptic feedback system for stair descent. In: 2017 design of medical devices conference; 2017.

  32. Osborn L, Nguyen H, Betthauser J, Kaliki RR, Thakor NV. Biologically inspired multi-layered synthetic skin for tactile feedback in prosthetic limbs. In: 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2016.

  33. Powell MA, Kaliki RR, Thakor NV. User training for pattern recognition-based myoelectric prostheses: improving phantom limb movement consistency and distinguishability. IEEE Trans Neural Syst Rehabil Eng. 2014;22(3):522–32.

    Article  Google Scholar 

  34. Engdahl SM, Christie BP, Kelly B, Davis A, Chestek CA, Gates DH. Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques. J Neuroeng Rehabil. 2015;12(1):53–53.

    Article  Google Scholar 

  35. Dawson MR, Carey JP, Fahimi F. Myoelectric training systems. Expert Rev Med Devices. 2011;8(5):581–9.

    Article  Google Scholar 

  36. Resnik L, Klinger SL, Korp K, Walters LS. Training protocol for a powered shoulder prosthesis. J Rehabil Res Dev. 2014;51(8):vii.

    Article  Google Scholar 

  37. Winslow BD, Ruble M, Huber Z. Mobile, game-based training for myoelectric prosthesis control. Front Bioeng Biotechnol 2018;6:94.

    Article  Google Scholar 

  38. Woodward RB, Hargrove LJ. Adapting myoelectric control in real-time using a virtual environment. J Neuroeng Rehabil. 2019;16(1):11.

    Article  Google Scholar 

  39. Pasquina PF, Evangelista M, Carvalho AJ, Lockhart J, Griffin S, Nanos G, McKay P, Hansen M, Ipsen D, Vandersea J, Butkus J, Miller M, Murphy I, Hankin D. First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. J Neurosci Methods. 2015;244:85–93.

    Article  Google Scholar 

  40. Pena AE, Kuntaegowdanahalli SS, Abbas J, Patrick J, Horch KW, Jung R. Mechanical fatigue resistance of an implantable branched lead system for a distributed set of longitudinal intrafascicular electrodes. J Neural Eng. 2017;14(6):66014.

    Article  Google Scholar 

  41. Jung R, Abbas JJ, Kuntaegowdanahalli S, Thota AK. Bionic intrafascicular interfaces for recording and stimulating peripheral nerve fibers. Bioelectromagnetics. 2018;1(1):55–69.

    Google Scholar 

  42. Lachapelle JR, Bjune CK, Kindle AL, Czarnecki A, Burns JR, Grainger JE, Segura CA, Nugent BD, Sriram TS, Parks PD, Keefer E, Cheng JJ. An implantable, designed-for-human-use peripheral nerve stimulation and recording system for advanced prosthetics. In: 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2016.

  43. Schiefer M, Tan D, Sidek SM, Tyler DJ. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J Neural Eng. 2016;13(1):16001–16001.

    Article  Google Scholar 

  44. Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler DJ. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in a human amputee. In: 2013 6th international IEEE/EMBS conference on neural engineering (NER); 2013.

  45. Charkhkar H, Shell CE, Marasco PD, Pinault GJ, Tyler DJ, Triolo RJ. High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations. J Neural Eng. 2018;15(5):56002.

    Article  Google Scholar 

  46. Graczyk EL, Schiefer MA, Saal HP, Delhaye BP, Bensmaia SJ, Tyler DJ. The neural basis of perceived intensity in natural and artificial touch. Sci Transl Med. 2016;8(362):362ra142.

    Article  Google Scholar 

  47. Saal HP, Bensmaia SJ. Biomimetic approaches to bionic touch through a peripheral nerve interface. Neuropsychologia. 2015;79:344–53.

    Article  Google Scholar 

  48. Petersen BA, Nanivadekar AC, Chandrasekaran S, Fisher LE. Phantom limb pain: peripheral neuromodulatory and neuroprosthetic approaches to treatment. Muscle Nerve. 2019;59(2):154–67.

    Article  Google Scholar 

  49. George JA, Brinton MR, Duncan CC, Hutchinson DT, Clark GA. Improved training paradigms and motor-decode algorithms: results from intact individuals and a recent transradial amputee with prior complex regional pain syndrome. In: 2018 40th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2018.

  50. Page DM, George JA, Kluger DT, Duncan C, Wendelken S, Davis T, Hutchinson DT, Clark GA. Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain after long-term hand amputation. Front Hum Neurosci. 2018;12:352.

    Article  Google Scholar 

  51. Graczyk EL, Gill A, Tyler DJ, Resnik LJ. The benefits of sensation on the experience of a hand: a qualitative case series. PLoS ONE. 2019;14(1):e0211469.

    Article  Google Scholar 

  52. Gritsenko V, Hardesty RL, Boots MT, Yakovenko S. Biomechanical constraints underlying motor primitives derived from the musculoskeletal anatomy of the human arm. PLoS ONE. 2016;11(10):e0164050.

    Article  Google Scholar 

  53. Pan L, Crouch D, Huang H. Musculoskeletal model for simultaneous and proportional control of 3-DOF hand and wrist movements from EMG signals. In: 2017 8th international IEEE/EMBS conference on neural engineering (NER); 2017.

  54. Dantas H, Warren DJ, Wendelken S, Davis T, Clark GA, Mathews VJ. Deep learning movement intent decoders trained with dataset aggregation for prosthetic limb control. IEEE Trans Biomed Eng. 2019.

  55. Yang Z, Nguyen AT, Jiang M, Tong W, Tam W, Zhao W. 15-DOF motor decoding based on a high performance PNS interface and deep neural network. Program No. 271.02.2018 Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience, 2018. Online.

  56. Wendelken S, Page DM, Davis T, Wark HAC, Kluger DT, Duncan C, Warren DJ, Hutchinson DT, Clark GA. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. J Neuroeng Rehabil. 2017;14(1):121.

    Article  Google Scholar 

  57. Clark GA, Wendelken SM, Page DM, Davis TS, Wark HAC, Normann RA, Warren DJ, Hutchinson DT. Using multiple high-count electrode arrays in human median and ulnar nerves to restore sensorimotor function after previous transradial amputation of the hand. In: Conference proceedings: ... annual international conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference; 2014.

  58. Ersen A, Sahin M. Polydimethylsiloxane-based optical waveguides for tetherless powering of floating microstimulators. J Biomed Opt. 2017;22(5):55005–55005.

    Article  Google Scholar 

  59. Yin M, Borton DA, Komar J, Agha N, Lu Y, Li H, Laurens J, Lang Y, Li Q, Bull C, Larson L, Rosler D, Bezard E, Courtine G, Nurmikko AV. Wireless neurosensor for full-spectrum electrophysiology recordings during free behavior. Neuron. 2014;84(6):1170–82.

    Article  Google Scholar 

  60. Neely RM, Piech DK, Santacruz SR, Maharbiz MM, Carmena JM. Recent advances in neural dust: towards a neural interface platform. Curr Opin Neurobiol. 2018;50:64–71.

    Article  Google Scholar 

  61. Lee B, Yeon P, Ghovanloo M. A multicycle Q-modulation for dynamic optimization of inductive links. IEEE Trans Ind Electron. 2016;63(8):5091–100.

    Article  Google Scholar 

  62. Roldan LM, Eggers TE, Kilgore KL, Bhadra N, Vrabec T, Bhadra N. Measurement of block thresholds in kiloHertz frequency alternating current peripheral nerve block. J Neurosci Methods. 2019;315:48–544.

    Article  Google Scholar 

  63. Fisher LE, Tyler DJ, Triolo RJ. Optimization of selective stimulation parameters for multi-contact electrodes. J Neuroeng Rehabil. 2013;10(1):25–25.

    Article  Google Scholar 

  64. Graczyk EL, Resnik L, Schiefer MA, Schmitt MS, Tyler DJ. Home use of a neural-connected sensory prosthesis provides the functional and psychosocial experience of having a hand again. Sci Rep. 2018;8(1):9866.

    Article  Google Scholar 

  65. Blustein D, Wilson A, Sensinger J. Assessing the quality of supplementary sensory feedback using the crossmodal congruency task. Sci Rep. 2018;8(1):6203.

    Article  Google Scholar 

  66. Shehata AW, Scheme EJ, Sensinger JW. Evaluating internal model strength and performance of myoelectric prosthesis control strategies. IEEE Trans Neural Syst Rehabil Eng. 2018;26(5):1046–55.

    Article  Google Scholar 

  67. Thumser ZC, Slifkin AB, Beckler DT, Marasco PD. Fitts' law in the control of isometric grip force with naturalistic targets. Front Psychol. 2018;9:560.

    Article  Google Scholar 

  68. Valevicius AM, Boser QA, Lavoie EB, Murgatroyd GS, Pilarski PM, Chapman CS, Vette AH, Hebert JS. Characterization of normative hand movements during two functional upper limb tasks. PLoS ONE. 2018;13(6):e0199549.

    Article  Google Scholar 

  69. Beckler D, Thumser Z, Schofield J, Marasco P. Fitts' Law in the control of isometric grip force with naturalistic targets. Front Psychol. 2018;9:560.

    Google Scholar 

  70. Collinger JL, Gaunt RA, Schwartz AB. Progress towards restoring upper limb movement and sensation through intracortical brain–computer interfaces. Curr Opin Biomed Eng. 2018;8:84–92.

    Article  Google Scholar 

  71. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJC, Velliste M, Boninger ML, Schwartz AB. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381(9866):557–64.

    Article  Google Scholar 

  72. Wodlinger B, Downey JE, Tyler-Kabara EC, Schwartz AB, Boninger ML, Collinger JL. Ten-dimensional anthropomorphic arm control in a human brain−machine interface: difficulties, solutions, and limitations. J Neural Eng. 2015;12(1):16011.

    Article  Google Scholar 

  73. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372–5.

    Article  Google Scholar 

  74. Ajiboye AB, Willett FR, Young DR, Memberg WD, Murphy BA, Miller JP, Walter BL, Sweet JA, Hoyen HA, Keith MW, Peckham PH, Simeral JD, Donoghue JP, Hochberg LR, Kirsch RF. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet. 2017;389(10081):1821–30.

    Article  Google Scholar 

  75. Bockbrader M, Annetta N, Friedenberg D, Schwemmer M, Skomrock N, Colachis S, Zhang M, Bouton C, Rezai A, Sharma G, Mysiw WJ. Clinically significant gains in skillful grasp coordination by an individual with tetraplegia using an implanted brain–computer interface with forearm transcutaneous muscle stimulation. Arch Phys Med Rehabil. 2019;100:1201–17.

    Article  Google Scholar 

  76. Flesher SN, Collinger JL, Foldes ST, Weiss JM, Downey JE, Tyler-Kabara EC, Bensmaia SJ, Schwartz AB, Boninger ML, Gaunt RA. Intracortical microstimulation of human somatosensory cortex. Sci Transl Med. 2016;8(361):361ra141.

    Article  Google Scholar 

  77. Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart KB. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA. 2009;301(6):619–28.

    Article  Google Scholar 

  78. Hebert JS, Olson JL, Morhart MJ, Dawson MR, Marasco PD, Kuiken TA, Chan KM. Novel targeted sensory reinnervation technique to restore functional hand sensation after transhumeral amputation. IEEE Trans Neural Syst Rehabil Eng. 2014;22(4):765–73.

    Google Scholar 

  79. Serino A, Akselrod M, Salomon R, Martuzzi R, Blefari ML, Canzoneri E, Rognini G, Zwaag WVD, Iakova M, Luthi F, Amoresano A, Kuiken T, Blanke O. Upper limb cortical maps in amputees with targeted muscle and sensory reinnervation. Brain. 2017;140(11):2993–3011.

    Article  Google Scholar 

  80. Frost CM, Ursu DC, Flattery SM, Nedic A, Hassett CA, Moon JD, Buchanan PJ, Gillespie RB, Kung TA, Kemp SWP, Cederna PS, Urbanchek MG. Regenerative peripheral nerve interfaces for real-time, proportional control of a Neuroprosthetic hand. J Neuroeng Rehabil. 2018;15(1):108.

    Article  Google Scholar 

  81. Urbanchek MG, Sando IC, Irwin ZT, Vu PP, Woo SL, Chestek CA, Cederna PS. Abstract: validation of regenerative peripheral nerve interfaces for control of a myoelectric hand by macaques and human. Plast Reconstr Surg Glob Open. 2016;4:69.

    Article  Google Scholar 

  82. Clites TR, Carty MJ, Ullauri JB, Carney ME, Mooney LM, Duval J-F, Srinivasan SS, Herr HM. Proprioception from a neurally controlled lower-extremity prosthesis. Sci Transl Med. 2018;10(443):eaap8373.

    Article  Google Scholar 

  83. Phillip RD, Al MM, Kay AR, Kendrew JM. Osseointegration in bilateral above-knee amputees following blast: a review of the first five UK cases. In: Orthopaedic proceedings; 2018.

  84. Resnik L, Benz H, Borgia M, Clark MA. Patient perspectives on osseointegration: a National Survey of Veterans with upper limb amputation. Pm&r; 2019.

  85. Israel JS, Dingle AM, Sanchez RJ, Kapur SK, Brodnick S, Richner TJ, Ness JP, Novello J, Williams JC, Poore SO. Neuroma implantation into long bones: clinical foundation for a novel osseointegrated peripheral nerve interface. Plast Reconstr Surg Glob Open. 2018;6(5).

  86. Mastinu E, Clemente F, Sassu P, Aszmann O, Branemark R, Hakansson B, Controzzi M, Cipriani C, Ortiz-Catalan M. Grip control and motor coordination with implanted and surface electrodes while grasping with an osseointegrated prosthetic hand. J Neuroeng Rehabil. 2019;16(1):49.

    Article  Google Scholar 

  87. Spearman BS, Desai VH, Mobini S, McDermott MD, Graham JB, Otto KJ, Judy JW, Schmidt CE. Tissue-engineered peripheral nerve interfaces. Adv Func Mater. 2018;28(12):1701713.

    Article  Google Scholar 

  88. Coker R, Zellmer E, Moran D. Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part A: recording. J Neural Eng. 2019;16(2):26001.

    Article  Google Scholar 

  89. Coker R, Zellmer E, Moran D. "Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part B: stimulation. J Neural Eng. 2019;16(2):26002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik J. Wolf.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The opinions and assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army, the Department of Defense, the Department of Veterans Affairs, the National Institutes of Health, or the United States Government.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, E.J., Cruz, T.H., Emondi, A.A. et al. Advanced technologies for intuitive control and sensation of prosthetics. Biomed. Eng. Lett. 10, 119–128 (2020). https://doi.org/10.1007/s13534-019-00127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-019-00127-7

Keywords

Navigation