Skip to main content
Log in

Efficient QRS complex detection algorithm based on Fast Fourier Transform

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

An ECG signal, generally filled with noise, when de-noised, enables a physician to effectively determine and predict the condition and health of the heart. This paper aims to address the issue of denoising a noisy ECG signal using the Fast Fourier Transform based bandpass filter. Multi-stage adaptive peak detection is then applied to identify the R-peak in the QRS complex of the ECG signal. The result of test simulations using the MIT/BIH Arrhythmia database shows high sensitivity and positive predictivity (PP) of 99.98 and 99.96% respectively, confirming the accuracy and reliability of proposed algorithm for detecting R-peaks in the ECG signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alwan A. Global status report on noncommunicable diseases 2010. Geneva: World Health Organization; 2011.

    Google Scholar 

  2. Dilaveris PE, et al. Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. Am Heart J. 1998;135:733–8.

    Article  Google Scholar 

  3. Webster JG, editor. Medical instrumentation application, and design. Boston: Houghton Mifflin; 1978.

    Google Scholar 

  4. Elgendi M, Mohamed A, Ward R. Efficient ECG compression and QRS detection for E-health applications. Sci Rep. 2017;7(459):1–16.

    Google Scholar 

  5. Calhoun BH, et al. Body sensor networks: a holistic approach from silicon to users. Proc IEEE. 2012;100:91–106.

    Article  Google Scholar 

  6. Luo K, Li J, Wu J. A dynamic compression scheme for energy-efficient real-time wireless electrocardiogram biosensors. IEEE Trans Instrum Meas. 2014;63:2160–9.

    Article  Google Scholar 

  7. Deepu CJ, Lian Y. A joint QRS detection and data compression scheme for wearable sensors. IEEE Trans Biomed Eng. 2015;62:165–75.

    Article  Google Scholar 

  8. https://physionet.org/cgi-bin/atm/ATM. Accessed 14 Oct 2018.

  9. Friesen GM, Jannett TC, Jadallah MA, Yates SL, Quint SR, Nagle HT. A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans Biomed Eng. 1990;37:85–98.

    Article  Google Scholar 

  10. Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng. 1985;32(3):230–6.

    Article  Google Scholar 

  11. Merah M, Abdelmalik TA, Larbi BH. R-peak detection based on stationary wavelet transform. Comput Methods Progr Biomed. 2015;121(3):149–60.

    Article  Google Scholar 

  12. Min YJ, Kim HK, Kang YR, Kim GS, Park J, Kim SW. Design of wavelet-based ECG detector for implantable cardiac pacemakers. IEEE Trans Biomed Circuits Syst. 2013;7(4):426–36.

    Article  Google Scholar 

  13. Kumar A, Komaragiri R, Kumar M. From pacemaker to wearable: techniques for ECG detection systems. J Med Syst. 2018;42(2):34.

    Article  Google Scholar 

  14. Kumar A, Kumar M, Komaragiri R. Design of a biorthogonal wavelet transform based R-peak detection and data compression scheme for implantable cardiac pacemaker systems. J Med Syst. 2018;42(6):102.

    Article  Google Scholar 

  15. Kumar A, Komaragiri R, Kumar M. Heart rate monitoring and therapeutic devices: a wavelet transform based approach for the modeling and classification of congestive heart failure. ISA transactions. 2018.

  16. Kumar A, Komaragiri R, Kumar M. Design of wavelet transform based electrocardiogram monitoring system. ISA transactions, 2018.

  17. Ieong C-I, et al. A 0.83-μW QRS detection processor using quadratic spline wavelet transform for wireless ECG acquisition in 0.35-μM CMOS. IEEE Trans Biomed Circuits Syst. 2012;6(6):586–95.

    Article  Google Scholar 

  18. Thakor NV, Webster JG, Tompkins WJ. Estimation of QRS complex power spectra for design of a QRS filter. IEEE Trans Biomed Eng. 1984;31(11):702–6.

    Article  Google Scholar 

  19. Ferdi Y, Herbeuval JP, Charef A, Boucheham B. R wave detection using fractional digital differentiation. ITBMRBM. 2003;24(5):273–80.

    Google Scholar 

  20. Poli R, Cagnoni S, Valli G. Genetic design of optimum linear and nonlinear QRS detectors. IEEE Trans Biomed Eng. 1995;42(11):1137–41.

    Article  Google Scholar 

  21. Chen HC, et al. A moving average based filtering system with its application to real-time QRS detection.In: Computers in cardiology, 2003.

  22. Kohler B-U, Hennig C, Orglmeister R. The principles of software QRS detection. IEEE Eng Med Biol Mag. 2002;21(1):42–57.

    Article  Google Scholar 

  23. Martínez JP, et al. A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans Biomed Eng. 2004;51(4):570–81.

    Article  Google Scholar 

  24. Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag. 2001;20(3):45–50.

    Article  Google Scholar 

  25. Chua E, Fang W. Mixed bio-signal lossless data compressor for portable brain-heart monitoring systems. IEEE Trans Consum Electron. 2011;57(1):267–73.

    Article  Google Scholar 

  26. Deepu CJ, et al. A 3-lead ECG-on-chip with QRS detection and lossless compression for wireless sensors. IEEE Trans Circuits Syst II Exp Briefs. 2016;63(12):1151–5.

    Article  Google Scholar 

  27. Arnavut Z. ECG signal compression based on burrows-wheeler transformation and inversion ranks of linear prediction. IEEE Trans Biomed Eng. 2007;54(3):410–8.

    Article  Google Scholar 

  28. Miaou S-G, Chao S-N. Wavelet-based lossy-to-lossless ECG compression in a unified vector quantization framework. IEEE Trans Biomed Eng. 2005;52(3):539–43.

    Article  Google Scholar 

  29. Chen S-L, Wang J-G. VLSI implementation of low-power cost efficient lossless ECG encoder design for wireless healthcare monitoring application. Electron Lett. 2013;49(2):91–3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjeet Kumar.

Ethics declarations

Conflict of interest

Authors Ashish Kumar, Rama Komaragiri and Manjeet Kumar declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Ranganatham, R., Komaragiri, R. et al. Efficient QRS complex detection algorithm based on Fast Fourier Transform. Biomed. Eng. Lett. 9, 145–151 (2019). https://doi.org/10.1007/s13534-018-0087-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-018-0087-y

Keywords

Navigation