Photoacoustic microscopy: principles and biomedical applications

Abstract

Photoacoustic microscopy (PAM) has become an increasingly popular technology for biomedical applications, providing anatomical, functional, and molecular information. In this concise review, we first introduce the basic principles and typical system designs of PAM, including optical-resolution PAM and acoustic-resolution PAM. The major imaging characteristics of PAM, i.e. spatial resolutions, penetration depth, and scanning approach are discussed in detail. Then, we introduce the major biomedical applications of PAM, including anatomical imaging across scales from cellular level to organismal level, label-free functional imaging using endogenous biomolecules, and molecular imaging using exogenous contrast agents. Lastly, we discuss the technical and engineering challenges of PAM in the translation to potential clinical impacts.

This is a preview of subscription content, log in to check access.

Fig. 1

Figures reproduced with permission from [16]

Fig. 2
Fig. 3

Figures reproduced with permissions from [34, 37]. (Color figure online)

Fig. 4

Figures adopted with permission from [47]

Fig. 5

Figures reproduced with permission from [54]

Fig. 6

Figures adopted with permission from [56]

Fig. 7

Figure adopted with permission from [16]

Fig. 8

Figure adopted with permission from [27]

Fig. 9

Figures reproduced with permission from [13]

Fig. 10

Figures adopted with permission from [77]

Fig. 11

Figures adopted with permission from [72]

References

  1. 1.

    Mcqueen DH. Acoustical theory of the photoacoustic effect in gaseous and liquid-media. J Phys D Appl Phys. 1979;12:1673–8.

    Article  Google Scholar 

  2. 2.

    Yang JM, Favazza C, Chen RM, Yao JJ, Cai X, Maslov K, Zhou QF, Shung KK, Wang LHV. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat Med. 2012;18:1297–302.

    Article  Google Scholar 

  3. 3.

    Wang LHV, Yao JJ. A practical guide to photoacoustic tomography in the life sciences. Nat Methods. 2016;13:627–38.

    Article  Google Scholar 

  4. 4.

    Wang LV. Multiscale photoacoustic microscopy and computed tomography. Nat Photonics. 2009;3:503–9.

    Article  Google Scholar 

  5. 5.

    Xu MH, Wang LHV. Photoacoustic imaging in biomedicine. Rev Sci Instrum. 2006;77:041101.

    Article  Google Scholar 

  6. 6.

    Holland GN, Moore WS, Hawkes RC. Nuclear magnetic-resonance tomography of the brain. J Comput Assist Tomogr. 1980;4:1–3.

    Article  Google Scholar 

  7. 7.

    Mulz D, Hiller D, Ermert H, Schnizlein B, Schrott KM. Ultrasound computer tomography–new image-producing possibilities. Ultraschall Med. 1984;5:11–3.

    Article  Google Scholar 

  8. 8.

    Dierolf M, Menzel A, Thibault P, Schneider P, Kewish CM, Wepf R, Bunk O, Pfeiffer F. Ptychographic X-ray computed tomography at the nanoscale. Nature. 2010;467:436–82.

    Article  Google Scholar 

  9. 9.

    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  Google Scholar 

  10. 10.

    Christison GB, Mackenzie HA. Laser photoacoustic determination of physiological glucose-concentrations in human whole-blood. Med Biol Eng Comput. 1993;31:284–90.

    Article  Google Scholar 

  11. 11.

    Nie LM, Chen M, Sun XL, Rong PF, Zheng NF, Chen XY. Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging. Nanoscale. 2014;6:1271–6.

    Article  Google Scholar 

  12. 12.

    Daft CM, Briggs GA, O’Brien WD Jr. Frequency dependence of tissue attenuation measured by acoustic microscopy. J Acoust Soc Am. 1989;85:2194–201.

    Article  Google Scholar 

  13. 13.

    Yao JJ, Maslov KI, Zhang Y, Xia YN, Wang LV. Label-free oxygen-metabolic photoacoustic microscopy in vivo. J Biomed Opt. 2011;16:076003.

    Article  Google Scholar 

  14. 14.

    Zhang C, Maslov K, Wang LV. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Opt Lett. 2010;35:3195–7.

    Article  Google Scholar 

  15. 15.

    Li C, Wang LV. Photoacoustic tomography and sensing in biomedicine. Phys Med Biol. 2009;54:R59–97.

    Article  Google Scholar 

  16. 16.

    Yao J, Wang LV. Sensitivity of photoacoustic microscopy. Photoacoustics. 2014;2:87–101.

    Article  Google Scholar 

  17. 17.

    Thomas RJ, Rockwell BA, Marshall WJ, Aldrich RC, Zimmerman SA, Rockwell RJ. A procedure for laser hazard classification under the Z136.1-2000 American National Standard for Safe Use of Lasers. J Laser Appl. 2002;14:57–66.

    Article  Google Scholar 

  18. 18.

    Foster FS, Pavlin CJ, Lockwood GR, Ryan LK, Harasiewicz KA, Berube L, Rauth AM. Principles and applications of ultrasound backscatter microscopy. Ieee T Ultrason Ferroelectr. 1993;40:608–17.

    Article  Google Scholar 

  19. 19.

    Jerri AJ. Shannon sampling theorem—its various extensions and applications—tutorial review. Proc Ieee. 1977;65:1565–96.

    Article  MATH  Google Scholar 

  20. 20.

    Kim JY, Lee C, Park K, Lim G, Kim C. Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner. Sci Rep Uk. 2015;5:7932.

    Article  Google Scholar 

  21. 21.

    Ma R, Sontges S, Shoham S, Ntziachristos V, Razansky D. Fast scanning coaxial optoacoustic microscopy. Biomed Opt Express. 2012;3:1724–31.

    Article  Google Scholar 

  22. 22.

    Rao B, Li L, Maslov K, Wang LH. Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging. Opt Lett. 2010;35:1521–3.

    Article  Google Scholar 

  23. 23.

    Wang LD, Maslov K, Yao JJ, Rao B, Wang LHV. Fast voice-coil scanning optical-resolution photoacoustic microscopy. Opt Lett. 2011;36:139–41.

    Article  Google Scholar 

  24. 24.

    Wang Y, Maslov K, Zhang Y, Hu S, Yang LM, Xia YN, Liu JA, Wang LHV. Fiber-laser-based photoacoustic microscopy and melanoma cell detection. J Biomed Opt. 2011;16:011014.

    Article  Google Scholar 

  25. 25.

    Yang DW, Xing D, Yang SH, Xiang LZ. Fast full-view photoacoustic imaging by combined scanning with a linear transducer array. Opt Express. 2007;15:15566–75.

    Article  Google Scholar 

  26. 26.

    Yao J, Maslov KI, Puckett ER, Rowland KJ, Warner BW, Wang LV. Double-illumination photoacoustic microscopy. Opt Lett. 2012;37:659–61.

    Article  Google Scholar 

  27. 27.

    Yao JJ, Wang LD, Yang JM, Maslov KI, Wong TTW, Li L, Huang CH, Zou J, Wang LV. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods. 2015;12:407–10.

    Article  Google Scholar 

  28. 28.

    Kim JY, Lee C, Park K, Han S, Kim C. High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid. Sci Rep. 2016;6:34803.

    Article  Google Scholar 

  29. 29.

    Lee D, Lee C, Kim S, Zhou Q, Kim J, Kim C. In vivo near infrared virtual intraoperative surgical photoacoustic optical coherence tomography. Sci Rep. 2016;6:35176.

    Article  Google Scholar 

  30. 30.

    Park K, Kim JY, Lee C, Jeon S, Lim G, Kim C. Handheld photoacoustic microscopy probe. Sci Rep. 2017;7:13359.

    Article  Google Scholar 

  31. 31.

    Hai PF, Yao JJ, Maslov KI, Zhou Y, Wang LHV. Near-infrared optical-resolution photoacoustic microscopy. Opt Lett. 2014;39:5192–5.

    Article  Google Scholar 

  32. 32.

    Strohm EM, Moore MJ, Kolios MC. Single cell photoacoustic microscopy: a review. Ieee J Sel Top Quantum. 2016;22:6801215.

    Article  Google Scholar 

  33. 33.

    Danielli A, Maslov K, Garcia-Uribe A, Winkler AM, Li C, Wang L, Chen Y, Dorn GW 2nd, Wang LV. Label-free photoacoustic nanoscopy. J Biomed Opt. 2014;19:086006.

    Article  Google Scholar 

  34. 34.

    Shelton RL, Mattison SP, Applegate BE. Volumetric imaging of erythrocytes using label-free multiphoton photoacoustic microscopy. J Biophotonics. 2014;7:834–40.

    Article  Google Scholar 

  35. 35.

    Zhang C, Zhang YS, Yao DK, Xia Y, Wang LV. Label-free photoacoustic microscopy of cytochromes. J Biomed Opt. 2013;18:20504.

    Article  Google Scholar 

  36. 36.

    Zhang YS, Yao J, Zhang C, Li L, Wang LV, Xia Y. Optical-resolution photoacoustic microscopy for volumetric and spectral analysis of histological and immunochemical samples. Angew Chem Int Ed Engl. 2014;53:8099–103.

    Article  Google Scholar 

  37. 37.

    Strohm EM, Berndl ES, Kolios MC. High frequency label-free photoacoustic microscopy of single cells. Photoacoustics. 2013;1:49–53.

    Article  Google Scholar 

  38. 38.

    Dong BQ, Li H, Zhang Z, Zhang K, Chen SY, Sun C, Zhang HF. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection. Optica. 2015;2:169–76.

    Article  Google Scholar 

  39. 39.

    Yang S, Ye F, Xing D. Intracellular label-free gold nanorods imaging with photoacoustic microscopy. Opt Express. 2012;20:10370–5.

    Article  Google Scholar 

  40. 40.

    Shelton RL, Applegate BE. Ultrahigh resolution photoacoustic microscopy via transient absorption. Biomed Opt Express. 2010;1:676–86.

    Article  Google Scholar 

  41. 41.

    Yao JJ, Wang LD, Li CY, Zhang C, Wang LHV. Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging. Phys Rev Lett. 2014;112:014302.

    Article  Google Scholar 

  42. 42.

    Zhu LR, Li L, Gao L, Wang LHV. Multiview optical resolution photoacoustic microscopy. Optica. 2014;1:217–22.

    Article  Google Scholar 

  43. 43.

    Schnackenberg CG. Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature. Am J Physiol Reg I. 2002;282:R335–42.

    Google Scholar 

  44. 44.

    Amann K, Tornig J, Kugel B, Gross ML, Tyralla K, El-Shakmak A, Szabo A, Ritz E. Hyperphosphatemia aggravates cardiac fibrosis and microvascular disease in experimental uremia. Kidney Int. 2003;63:1296–301.

    Article  Google Scholar 

  45. 45.

    Andersen HU, Lanng S, Pressler T, Laugesen CS, Mathiesen ER. Cystic fibrosis-related diabetes—the presence of microvascular diabetes complications. Diabetes Care. 2006;29:2660–3.

    Article  Google Scholar 

  46. 46.

    Elices MJ, Tsai V, Strahl D, Goel AS, Tollefson V, Arrhenius T, Wayner EA, Gaeta FCA, Fikes JD, Firestein GS. Expression and functional-significance of alternatively spliced Cs1 fibronectin in rheumatoid-arthritis microvasculature. J Clin Invest. 1994;93:405–16.

    Article  Google Scholar 

  47. 47.

    Hu S, Wang LV. Photoacoustic imaging and characterization of the microvasculature. J Biomed Opt. 2010;15:011101.

    Article  Google Scholar 

  48. 48.

    Colantuoni A, Bertuglia S, Intaglietta M. Variations of rhythmic diameter changes at the arterial microvascular bifurcations. Pflug Arch Eur J Physiol. 1985;403:289–95.

    Article  Google Scholar 

  49. 49.

    Jeon S, Song HB, Kim J, Lee BJ, Managuli R, Kim JH, Kim JH, Kim C. In vivo photoacoustic imaging of anterior ocular vasculature: a random sample consensus approach. Sci Rep. 2017;7:4318.

    Article  Google Scholar 

  50. 50.

    Bost W, Lemor R, Fournelle M. Optoacoustic imaging of subcutaneous microvasculature with a class one laser. IEEE Trans Med Imaging. 2014;33:1900–4.

    Article  Google Scholar 

  51. 51.

    Zhang EZ, Laufer JG, Pedley RB, Beard PC. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys Med Biol. 2009;54:1035–46.

    Article  Google Scholar 

  52. 52.

    Zhang HF, Maslov K, Li ML, Stoica G, Wang LV. In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy. Opt Express. 2006;14:9317–23.

    Article  Google Scholar 

  53. 53.

    Zhang HF, Maslov K, Wang LV. In vivo imaging of subcutaneous structures using functional photoacoustic microscopy. Nat Protoc. 2007;2:797–804.

    Article  Google Scholar 

  54. 54.

    Zhang HF, Maslov K, Stoica G, Wang LV. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol. 2006;24:848–51.

    Article  Google Scholar 

  55. 55.

    Maslov K, Zhang HF, Hu S, Wang LV. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett. 2008;33:929–31.

    Article  Google Scholar 

  56. 56.

    Wong TTW, Zhang R, Zhang C, Hsu HC, Maslov KI, Wang L, Shi J, Chen R, Shung KK, Zhou Q, Wang LV. Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic microscopy. Nat Commun. 2017;8:1386.

    Article  Google Scholar 

  57. 57.

    Herzog E, Taruttis A, Beziere N, Lutich AA, Razansky D, Ntziachristos V. Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography. Radiology. 2012;263:461–8.

    Article  Google Scholar 

  58. 58.

    Razansky D, Buehler A, Ntziachristos V. Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc. 2011;6:1121–9.

    Article  Google Scholar 

  59. 59.

    Liao LD, Li ML, Lai HY, Shih YYI, Lo YC, Tsang SN, Chao PCP, Lin CT, Jaw FS, Chen YY. Imaging brain hemodynamic changes during rat forepaw electrical stimulation using functional photoacoustic microscopy. Neuroimage. 2010;52:562–70.

    Article  Google Scholar 

  60. 60.

    Stein EW, Maslov K, Wang LHV. Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy. J Appl Phys. 2009;105:102027.

    Article  Google Scholar 

  61. 61.

    Stein EW, Maslov K, Wang LHV. Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy. J Biomed Opt. 2009;14:020502.

    Article  Google Scholar 

  62. 62.

    Miles KA, Griffiths MR, Keith CJ. Blood flow-metabolic relationships are dependent on tumour size in non-small cell lung cancer: a study using quantitative contrast-enhanced computer tomography and positron emission tomography. Eur J Nucl Med Mol Imaging. 2006;33:22–8.

    Article  Google Scholar 

  63. 63.

    Yao JJ, Maslov K, Hu S, Wang LHV. Evans blue dye-enhanced capillary-resolution photoacoustic microscopy in vivo. J Biomed Opt. 2009;14:054049.

    Article  Google Scholar 

  64. 64.

    Chen SL, Xie ZX, Carson PL, Wang XD, Guo LJ. In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy. Opt Lett. 2011;36:4017–9.

    Article  Google Scholar 

  65. 65.

    Sheinfeld A, Eyal A. Photoacoustic thermal diffusion flowmetry. Biomed Opt Express. 2012;3:800–13.

    Article  Google Scholar 

  66. 66.

    Wang LD, Yao JJ, Maslov KI, Xing WX, Wang LHV. Ultrasound-heated photoacoustic flowmetry. J Biomed Opt. 2013;18:117003.

    Article  Google Scholar 

  67. 67.

    Zhang RY, Wang LD, Yao JJ, Yeh CH, Wang LHV. In vivo optically encoded photoacoustic flowgraphy. Opt Lett. 2014;39:3814–7.

    Article  Google Scholar 

  68. 68.

    Brunker J, Beard P. Velocity measurements in whole blood using acoustic resolution photoacoustic Doppler. Biomed Opt Express. 2016;7:2789–806.

    Article  Google Scholar 

  69. 69.

    Liu W, Lan B, Hu L, Chen R, Zhou Q, Yao J. Photoacoustic thermal flowmetry with a single light source. J Biomed Opt. 2017;22:1–6.

    Google Scholar 

  70. 70.

    Weber J, Beard PC, Bohndiek SE. Contrast agents for molecular photoacoustic imaging. Nat Methods. 2016;13:639–50.

    Article  Google Scholar 

  71. 71.

    Homan KA, Souza M, Truby R, Luke GP, Green C, Vreeland E, Emelianov S. Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging. ACS Nano. 2012;6:641–50.

    Article  Google Scholar 

  72. 72.

    Kim C, Cho EC, Chen JY, Song KH, Au L, Favazza C, Zhang QA, Cobley CM, Gao F, Xia YN, Wang LHV. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano. 2010;4:4559–64.

    Article  Google Scholar 

  73. 73.

    Li PC, Wang CRC, Shieh DB, Wei CW, Liao CK, Poe C, Jhan S, Ding AA, Wu YN. In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express. 2008;16:18605–15.

    Article  Google Scholar 

  74. 74.

    Nie LM, Wang SJ, Wang XY, Rong PF, Bhirde A, Ma Y, Liu G, Huang P, Lu GM, Chen XY. In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small. 2014;10:1585–93.

    Article  Google Scholar 

  75. 75.

    Pu KY, Shuhendler AJ, Jokerst JV, Mei JG, Gambhir SS, Bao ZN, Rao JH. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol. 2014;9:233–9.

    Article  Google Scholar 

  76. 76.

    Brunker J, Yao JJ, Laufer J, Bohndiek SE. Photoacoustic imaging using genetically encoded reporters: a review. J Biomed Opt. 2017;22:070901.

    Article  Google Scholar 

  77. 77.

    Cai X, Li L, Krumholz A, Guo ZJ, Erpelding TN, Zhang C, Zhang Y, Xi YN, Wang LHV. Multi-scale molecular photoacoustic tomography of gene expression. PLoS ONE. 2012;7:e43999.

    Article  Google Scholar 

  78. 78.

    Kim C, Favazza C, Wang LHV. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev. 2010;110:2756–82.

    Article  Google Scholar 

  79. 79.

    de la Zerda A, Liu ZA, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Chen XY, Dai HJ, Gambhir SS. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett. 2010;10:2168–72.

    Article  Google Scholar 

  80. 80.

    Dean-Ben XL, Razansky D. On the link between the speckle free nature of optoacoustics and visibility of structures in limited-view tomography. Photoacoustics. 2016;4:133–40.

    Article  Google Scholar 

  81. 81.

    Guo Z, Li L, Wang LV. On the speckle-free nature of photoacoustic tomography. Med Phys. 2009;36:4084–8.

    Article  Google Scholar 

  82. 82.

    Liu W, Zhou Y, Wang M, Li L, Vienneau E, Chen R, Luo J, Xu C, Zhou Q, Wang LV, Yao J. Correcting the limited view in optical-resolution photoacoustic microscopy. J Biophotonics. 2018;11:e201700196.

    Article  Google Scholar 

  83. 83.

    Rivenson Y, Gorocs Z, Gunaydin H, Zhang YB, Wang HD, Ozcan A. Deep learning microscopy. Optica. 2017;4:1437–43.

    Article  Google Scholar 

  84. 84.

    Zong WJ, Wu RL, Li ML, Hu YH, Li YJ, Li JH, Rong H, Wu HT, Xu YY, Lu Y, Jia HB, Fan M, Zhou Z, Zhang YF, Wang AM, Chen LY, Cheng HP. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods. 2017;14:713–9.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Neel Kurupassery for editing the manuscript.

Funding

This study was funded by Duke MEDx fund (to J.Y.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Junjie Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Yao, J. Photoacoustic microscopy: principles and biomedical applications. Biomed. Eng. Lett. 8, 203–213 (2018). https://doi.org/10.1007/s13534-018-0067-2

Download citation

Keywords

  • Photoacoustic microscopy
  • Structural imaging
  • Functional imaging
  • Molecular imaging
  • Endogenous biomolecules
  • Exogenous contrast agents