Biomedical Engineering Letters

, Volume 8, Issue 1, pp 5–28 | Cite as

Computer-assisted brain tumor type discrimination using magnetic resonance imaging features

  • Sajid Iqbal
  • M. Usman Ghani Khan
  • Tanzila Saba
  • Amjad Rehman
Review Article


Medical imaging plays an integral role in the identification, segmentation, and classification of brain tumors. The invention of MRI has opened new horizons for brain-related research. Recently, researchers have shifted their focus towards applying digital image processing techniques to extract, analyze and categorize brain tumors from MRI. Categorization of brain tumors is defined in a hierarchical way moving from major to minor ones. A plethora of work could be seen in literature related to the classification of brain tumors in categories such as benign and malignant. However, there are only a few works reported on the multiclass classification of brain images where each part of the image containing tumor is tagged with major and minor categories. The precise classification is difficult to achieve due to ambiguities in images and overlapping characteristics of different type of tumors. In the current study, a comprehensive review of recent research on brain tumors multiclass classification using MRI is provided. These multiclass classification studies are categorized into two major groups: XX and YY and each group are further divided into three sub-groups. A set of common parameters from the reviewed works is extracted and compared to highlight the merits and demerits of individual works. Based on our analysis, we provide a set of recommendations for researchers and professionals working in the area of brain tumors classification.


Human brain cancer diagnosis and analysis Magnetic resonance imaging Human brain tumor multi-classification 


Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Lacy J, Saadati H, Yu J. Complications of brain tumors and their treatment. Hematol Oncol Clin N Am. 2012;26(4):779–96.CrossRefGoogle Scholar
  2. 2.
    Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep. 2012;14(1):48–54.CrossRefGoogle Scholar
  3. 3.
    Crocetti E, et al. Epidemiology of glial and non-glial brain tumours in Europe. Eur J Cancer. 2012;48(10):1532–42.CrossRefGoogle Scholar
  4. 4.
    de Robles P, et al. The worldwide incidence and prevalence of primary brain tumors: a systematic review and meta-analysis. Neuro-oncology. 2015;17(6):776–83.CrossRefGoogle Scholar
  5. 5.
    Tamimi AF, et al. Epidemiology of malignant and non-malignant primary brain tumors in Jordan. Neuroepidemiology. 2015;45(2):100–8.CrossRefGoogle Scholar
  6. 6.
    Saba T, Rehman A, Altameem A, Uddin M. Annotated comparisons of proposed preprocessing techniques for script recognition. Neural Comput Appl. 2014;25(6):1337–47. doi: 10.1007/s00521-014-1618-9.CrossRefGoogle Scholar
  7. 7.
    Situ, Breast Carcinoma. In “Cancer Facts.” (2015).
  8. 8.
    Singhal T, et al. 11C-methionine PET for grading and prognostication in gliomas: a comparison study with 18F-FDG PET and contrast enhancement on MRI. J Nucl Med. 2012;53(11):1709–15.CrossRefGoogle Scholar
  9. 9.
    Rehman A, Saba T. Performance analysis of character segmentation approach for cursive script recognition on benchmark database. Digit Signal Process. 2011;21(3):486–90. doi: 10.1016/j.dsp.2011.01.016.CrossRefGoogle Scholar
  10. 10.
    Rousseau A, Mokhtari K, Duyckaerts C. The 2007 WHO classification of tumors of the central nervous system—what has changed? Curr Opin Neurol. 2008;21(6):720–7.CrossRefGoogle Scholar
  11. 11.
    Schroeder A, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 2012;12(1):39–50.CrossRefGoogle Scholar
  12. 12.
    Rehman A, Saba T. An intelligent model for visual scene analysis and compression. Int Arab J Inf Technol. 2013;10(13):126–36.Google Scholar
  13. 13.
    Younus ZS, Mohamad D, Saba T, Alkawaz MH, Rehman A, Al-Rodhaan M, Al-Dhelaan A. Content-based image retrieval using PSO and k-means clustering algorithm. Arabian J Geosci. 2015;8(8):6211–24. doi: 10.1007/s12517-014-1584-7.CrossRefGoogle Scholar
  14. 14.
    Roy S, Bandyopadhyay SK. Detection and quantification of brain tumor from MRI of brain and it’s symmetric analysis. Int J Inf Commun Technol Res. 2012;2(6):477–83.Google Scholar
  15. 15.
    Bauer S, et al. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol. 2013;58(13):R97.CrossRefGoogle Scholar
  16. 16.
    Al-Ameen Z, Sulong G, Rehman A, Al-Dhelaan A, Saba T, Al-Rodhaan M. An innovative technique for contrast enhancement of computed tomography images using normalized gamma-corrected contrast-limited adaptive histogram equalization. EURASIP J Adv Signal Process. 2015;. doi: 10.1186/s13634-015-0214-1.Google Scholar
  17. 17.
    Lung JWJ, Salam MSH, Rehman A, Rahim MSM, Saba T. Fuzzy phoneme classification using multi-speaker vocal tract length normalization. IETE Tech Rev. 2014;31(2):128–36. doi: 10.1080/02564602.2014.892669.CrossRefGoogle Scholar
  18. 18.
    Sridhar D, Krishna IVM. Brain tumor classification using discrete cosine transform and probabilistic neural network. In: Signal processing image processing and pattern recognition (ICSIPR), 2013 international conference on. IEEE; 2013.Google Scholar
  19. 19.
    Sachdeva J, et al. A dual neural network ensemble approach for multiclass brain tumor classification. Int J Numer Methods Biomed Eng. 2012;28(11):1107–20.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Artzi M, et al. Classification of tumor area using combined DCE and DSC MRI in patients with glioblastoma. J Neuro-Oncol. 2015;121(2):349–57.CrossRefGoogle Scholar
  21. 21.
    Patwa N, Kavuri SP, Grandhi B, Hongrak K. Study on effectiveness of location-based advertising on food service industry in Sydney. J Bus Technovation. 2016;4(3):112–24.Google Scholar
  22. 22.
    Hussain SJ, Savithri TS, Sree Devi PV. Segmentation of tissues in brain MRI images using dynamic neuro-fuzzy technique. Int J Soft Comput Eng (IJSCE). 2012;1(6):416–23.Google Scholar
  23. 23.
    Rehman A, Saba T. Neural network for document image preprocessing. Artif Intell Rev. 2014;42(2):253–73. doi: 10.1007/s10462-012-9337-z.CrossRefGoogle Scholar
  24. 24.
    Joudaki S, Mohamad D, Saba T, Rehman A, Al-Rodhaan M, Al-Dhelaan A. Vision-based sign language classification: a directional review. IETE Tech Rev. 2014;31(5):383–91. doi: 10.1080/02564602.2014.961576.CrossRefGoogle Scholar
  25. 25.
    Ryu YJ, et al. Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity. PLoS ONE. 2014;9(9):e108335.CrossRefGoogle Scholar
  26. 26.
    Chung C, Metser U, Ménard C. Advances in magnetic resonance imaging and positron emission tomography imaging for grading and molecular characterization of glioma. In: Seminars in radiation oncology, vol. 25(3). WB Saunders; 2015.Google Scholar
  27. 27.
    Lasocki A, et al. MRI grading versus histology: predicting survival of World Health Organization Grade II–IV astrocytomas. Am J Neuroradiol. 2015;36(1):77–83.CrossRefGoogle Scholar
  28. 28.
    Sachdeva J, et al. Segmentation, feature extraction, and multiclass brain tumor classification. J Digit Imaging. 2013;26(6):1141–50.CrossRefGoogle Scholar
  29. 29.
    Shah SA, Chauhan NC. Techniques for detection and analysis of tumours from brain MRI images: a review. J Biomed Eng Med Imaging. 2016;3(1):09.CrossRefGoogle Scholar
  30. 30.
    Al-Shaikhli SDS, Yang MY, Rosenhahn B. Brain tumor classification using sparse coding and dictionary learning. In: IEEE international conference on image processing, 2014.Google Scholar
  31. 31.
    Upadhyay N, Waldman AD. Conventional MRI evaluation of gliomas. Brit J Radiol. 2011;84(Spec Iss 2):107–11. doi: 10.1259/bjr/65711810
  32. 32.
    Van Cauter S, et al. Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas. Neuro-oncology. 2014;16(7):1010–21.CrossRefGoogle Scholar
  33. 33.
    Rehman Y, Azim F. Comparison of different artificial neural networks for brain tumour classification via magnetic resonance images. In: Proceedings of 14th IEEE international conference on computer modelling and simulation; 2012.Google Scholar
  34. 34.
    Bobek-Billewicz B, et al. Anaplastic transformation of low-grade gliomas (WHO II) on magnetic resonance imaging. Folia Neuropathol. 2014;52(2):128–40.CrossRefGoogle Scholar
  35. 35.
    Nagpal J, Vidyarthi A, Mittal N. CLOM: counting label occurrence matrix for feature extraction in MR images. In: Signal processing and communication (ICSC), 2015 international conference on. IEEE; 2015.Google Scholar
  36. 36.
    Arnaud A, et al. Tumor classification and prediction using robust multivariate clustering of multiparametric MRI. Int Soc Magn Resonance Med. Toronto, Canada. 2015.
  37. 37.
    Hoegler D. Radiotherapy for palliation of symptoms in incurable cancer. Curr Probl Cancer. 1997;21(3):129–83.CrossRefGoogle Scholar
  38. 38.
    Ricard D, et al. Primary brain tumours in adults. The Lancet. 2012;379(9830):1984–96.CrossRefGoogle Scholar
  39. 39.
    Kaplan AM, et al. Brainstem gliomas in children. Pediatric Neurosurg. 1996;24(4):185–92.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Stewart S, et al. Revision of the 1996 working formulation for the standardization of nomenclature in the diagnosis of lung rejection. J Heart Lung Transplant. 2007;26(12):1229–42.CrossRefGoogle Scholar
  41. 41.
    Figarella-Branger D, et al. Prognostic factors in intracranial ependymomas in children. J Neurosurg. 2000;93(4):605–13.CrossRefGoogle Scholar
  42. 42.
    Schubert LK, et al. A comprehensive assessment by tumor site of patient setup using daily MVCT imaging from more than 3800 helical tomotherapy treatments. Int J Radiat Oncol Biol Phys. 2009;73(4):1260–9.CrossRefGoogle Scholar
  43. 43.
    Baca SC, et al. Punctuated evolution of prostate cancer genomes. Cell. 2013;153(3):666–77.CrossRefGoogle Scholar
  44. 44.
    Barkovich AJ, et al. Brain stem gliomas: a classification system based on magnetic resonance imaging. Pediatr Neurosurg. 1990;16(2):73–83.CrossRefGoogle Scholar
  45. 45.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P. The 2007 WHO Classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.
  46. 46.
    Doolittle ND. State of the science in brain tumor classification. In: Seminars in oncology nursing, vol. 20(4). WB Saunders; 2004.Google Scholar
  47. 47.
    Biersack HJ, et al. Imaging of brain tumors with L-3-[123I] iodo-alpha-methyl tyrosine and SPECT. J Nucl Med. 1989;30(1):110–2.Google Scholar
  48. 48.
    Chen W, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med. 2006;47(6):904–11.Google Scholar
  49. 49.
    Jadooki S, Mohamad D, Saba T, Almazyad AS, Rehman A. Fused features mining for depth-based hand gesture recognition to classify blind human communication. Neural Comput Appl. 2016;. doi: 10.1007/s00521-016-2244-5.Google Scholar
  50. 50.
    Saba T, Al-Zahrani S, Rehman A. Expert system for offline clinical guidelines and treatment. Life Sci J. 2012;9(4):2639–58.Google Scholar
  51. 51.
    Elarbi-Boudihir M, Rehman A, Saba T. Video motion perception using optimized Gabor filter. Int J Phys Sci. 2011;6(12):2799–806.Google Scholar
  52. 52.
    Puttick S, et al. PET, MRI, and simultaneous PET/MRI in the development of diagnostic and therapeutic strategies for glioma. Drug Discov Today. 2015;20(3):306–17.CrossRefGoogle Scholar
  53. 53.
    Saba T, Rehman A, Elarbi-Boudihir M. Methods and strategies on off-line cursive touched characters segmentation: a directional review. Artif Intell Rev. 2014;42(4):1047–66. doi: 10.1007/s10462-011-9271-5.CrossRefGoogle Scholar
  54. 54.
    Norouzi A, Rahim MSM, Altameem A, Saba T, Rada AE, Rehman A, Uddin M. Medical image segmentation methods, algorithms, and applications. IETE Tech Rev. 2014;31(3):199–213. doi: 10.1080/02564602.2014.906861.CrossRefGoogle Scholar
  55. 55.
    Rad AE, Rahim MSM, Rehman A, Altameem A, Saba T. Evaluation of current dental radiographs segmentation approaches in computer-aided applications. IETE Tech Rev. 2013;30(3):210–22.CrossRefGoogle Scholar
  56. 56.
    Rad AE, Rahim MSM, Rehman A, Saba T. Digital dental X-ray database for caries screening. 3D Res. 2016;7(2):1–5. doi: 10.1007/s13319-016-0096-5.CrossRefGoogle Scholar
  57. 57.
    Husham A, Hazim Alkawaz M, Saba T, Rehman A, Saleh Alghamdi J. Automated nuclei segmentation of malignant using level sets. Microsc Res Tech. 2016;79(10):993–7. doi: 10.1002/jemt.22733.CrossRefGoogle Scholar
  58. 58.
    Vidyarthi A, Mittal N. Comparative study for brain tumor classification on MR/CT images. In: Proceedings of the third international conference on soft computing for problem solving. Springer; 2014.Google Scholar
  59. 59.
    Saba T, Rehman A, Sulong G. An intelligent approach to image denoising. J Theor Appl Inf Technol. 2010;17(2):32–6.Google Scholar
  60. 60.
    Soltaninejad M, et al. Brain tumour grading in different MRI protocols using SVM on statistical features. 2014;1–6.Google Scholar
  61. 61.
    Soleimanizadeh S, Mohamad D, Saba T, Rehman A. Recognition of partially occluded objects based on the three different color spaces (RGB, YCbCr, HSV). 3D Research. 2015;6(3):1–10. doi: 10.1007/s13319-015-0052-9.CrossRefGoogle Scholar
  62. 62.
    Saba T. Pixel intensity based cumulative features for moving object tracking (MOT) in darkness. 3D Res. 2016;7(10):1–6. doi: 10.1007/s13319-016-0089-4.Google Scholar
  63. 63.
    Chaddad A. Automated feature extraction in brain tumor by magnetic resonance imaging using gaussian mixture models. J Biomed Imaging. 2015;2015:8.Google Scholar
  64. 64.
    Rehman A, Saba T. Document skew estimation and correction: analysis of techniques, common problems and possible solutions. Appl Artif Intell. 2011;25(9):769–87. doi: 10.1080/08839514.2011.607009.CrossRefGoogle Scholar
  65. 65.
    Rehman A,, Mohammad D, Sulong G, Saba T (2009). Simple and effective techniques for core-region detection and slant correction in offline script recognition. In: Proceedings of IEEE international conference on signal and image processing applications (ICSIPA’09), p. 15–20.Google Scholar
  66. 66.
    Javed U, et al. MRI brain classification using texture features, fuzzy weighting and support vector machine. Prog Electromagn Res B. 2013;53:73–88.CrossRefGoogle Scholar
  67. 67.
    Abbas N, Saba T, Mohamad D, Rehman A, Almazyad AS, Al-Ghamdi JS. Machine aided malaria parasitemia detection in Giemsa-stained thin blood smears. Neural Comput Appl. 2016;. doi: 10.1007/s00521-016-2474-6.Google Scholar
  68. 68.
    Jamal A, Hazim Alkawaz M, Rehman A, Saba T. Retinal imaging analysis based on vessel detection. Microsc Res Technol. 2017;00:1–13. doi: 10.1002/jemt.Google Scholar
  69. 69.
    Saba T, Rehman A, Al-Dhelaan A, Al-Rodhaan M. Evaluation of current documents image denoising techniques: a comparative study. Appl Artif Intell. 2014;28(9):879–87. doi: 10.1080/08839514.2014.954344.CrossRefGoogle Scholar
  70. 70.
    Saba T, Rehman A, Sulong G. Non-linear segmentation of touched roman characters based on genetic algorithm. Int J Comput Sci Eng. 2010;2(6):2167–72.Google Scholar
  71. 71.
    Kharat KD, Kulkarni PP, Nagori MB. Brain tumor classification using neural network based methods. Int J Comput Sci Inform. 2012;1(4):2231–5292.Google Scholar
  72. 72.
    Saba T, Rehman A, Sulong G. Cursive script segmentation with neural confidence. Int J Innov Comput Inf Control (IJICIC). 2011;7(7):1–10.Google Scholar
  73. 73.
    Liu Y-h, et al. Classification of MR tumor images based on Gabor wavelet analysis. J Med Biol Eng. 2012;32(1):22–8.CrossRefGoogle Scholar
  74. 74.
    Iftikhar S, Fatima K, Rehman A, Almazyad AS, Saba T. An evolution based hybrid approach for heart diseases classification and associated risk factors identification. Biomed Res. 2017;28(8):3451–5.Google Scholar
  75. 75.
    Rahim MSM, Norouzi A, Rehman A, Saba T. 3D bones segmentation based on CT images visualization. Biomed Res. 2017;28(8):3641–4.Google Scholar
  76. 76.
    Rahim MSM, Rehman A, Kurniawan F, Saba T. Ear biometrics for human classification based on region features mining. Biomed Res. 2017;28(10):4660–4.Google Scholar
  77. 77.
    Fu B, Ren Z. Frequency and space domain features for image classification using Gaussian mixture models. In: Embedded software and systems symposia, 2008. ICESS Symposia’08. International conference on. IEEE; 2008.Google Scholar
  78. 78.
    Zulpe N, Pawar V. GLCM textural features for brain tumor classification. IJCSI International Journal of Computer Science Issues. 2012;9(3):354–9.Google Scholar
  79. 79.
    Saba T, Rehman A, Sulong G. Improved statistical features for cursive character recognition. Int J Innov Comput Inf Control (IJICIC). 2011;7(9):5211–24.Google Scholar
  80. 80.
    Saba T, Rehman A. Machine learning and script recognition. Lambert Academic Publisher; 2012. p. 56–68.Google Scholar
  81. 81.
    Haralick RM, Shanmugam K, Dinstein H. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;6:610–21.CrossRefGoogle Scholar
  82. 82.
    Mughal B, Muhammad N, Sharif M, Saba T, Rehman A. Extraction of breast border and removal of pectoral muscle in wavelet, domain. Biomed Res. 2017;28(11):5041–3.Google Scholar
  83. 83.
    Martínez-Cortés T, et al. A Bayesian model for brain tumor classification using clinical-based features. In: IEEE International conference on image processing; 2014.Google Scholar
  84. 84.
    Naeini KM et al. Identifying the mesenchymal molecular subtype of glioblastoma using quantitative volumetric analysis of anatomic magnetic resonance images. Neuro-oncology. 2013;15(5):626–34. doi: 10.1093/neuonc/not008.
  85. 85.
    Fern BM, Rahim MSM, Saba T, Almazyad AS, Rehman A. Stratified classification of plant species based on venation state. Biomed Res. 2017;28(13):5660–3.Google Scholar
  86. 86.
    Kumar RS, Karnan M. Review of MRI image classification techniques. Int J Res Stud Comput Sci Eng. 2014;1(1):21–8.Google Scholar
  87. 87.
    Juan-Albarracín J, et al. Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS ONE. 2015;10(5):e0125143.CrossRefGoogle Scholar
  88. 88.
    Kumar V, et al. Classification of brain tumors using PCA-ANN. In: IEEE World Congress on information and communication technologies (WICT); 2011.Google Scholar
  89. 89.
    Watanabe Y, et al. Preoperative histological grading of meningiomas using apparent diffusion coefficient at 3T MRI. Eur J Radiol. 2013;82(4):658–63.CrossRefGoogle Scholar
  90. 90.
    Cheng J, et al. Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE. 2015;10(10):e0140381.CrossRefGoogle Scholar
  91. 91.
    Rajini NH, Narmatha T, Bhavani R. Automatic classification of MR brain tumor images using decision tree. In: Proceedings of international conference on electronics, vol. 31; 2012.Google Scholar
  92. 92.
    Nasir M, Khanum A, Baig A. Classification of brain tumor types in MRI scans using normalized cross-correlation in polynomial domain. In: Frontiers of information technology (FIT), 2014 12th international conference on. IEEE; 2014.Google Scholar
  93. 93.
    Zöllner FG, Emblem KE, Schad LR. SVM-based glioma grading: optimization by feature reduction analysis. Zeitschrift für medizinische Physik. 2012;22(3):205–14.CrossRefGoogle Scholar
  94. 94.
    Lahmiri S, Boukadoum M. Classification of brain MRI using the LH and HL wavelet transform sub-bands. In: Circuits and systems (ISCAS), 2011 IEEE international symposium on. IEEE; 2011.Google Scholar
  95. 95.
    Saritha M, Joseph KP, Mathew AT. Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recognit Lett. 2013;34(16):2151–6.CrossRefGoogle Scholar
  96. 96.
    Kalbkhani H, Shayesteh MG, Zali-Vargahan B. Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series. Biomed Signal Process Control. 2013;8(6):909–19.CrossRefGoogle Scholar
  97. 97.
    Shi J, et al. Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing. 2016;94:87–94.Google Scholar
  98. 98.
    Bentley RT, et al. Canine intracranial gliomas: relationship between magnetic resonance imaging criteria and tumor type and grade. Vet J. 2013;198(2):463–71.CrossRefGoogle Scholar
  99. 99.
    Caulo M, et al. Data-driven grading of brain gliomas: a multiparametric MR imaging study. Radiology. 2014;272(2):494–503.CrossRefGoogle Scholar
  100. 100.
    Guzmán-De-Villoria JA, et al. Added value of advanced over conventional magnetic resonance imaging in grading gliomas and other primary brain tumors. Cancer Imaging. 2014;14(1):1–10.CrossRefGoogle Scholar
  101. 101.
    Lin B-J, et al. Correlation between magnetic resonance imaging grading and pathological grading in meningioma: clinical article. J Neurosurg. 2014;121(5):1201–8.CrossRefGoogle Scholar
  102. 102.
    Vidyarthi A, Agarwal P, Mittal N. “Machine learning based classification of high grade malignant brain tumors using diverse feature set. In: 2nd international conference on advances in computing and information technology (ICACIT); 2014.Google Scholar
  103. 103.
    Wang R, et al. Differentiation between solitary cerebral metastasis and astrocytoma on the basis of subventricular zone involvement on magnetic resonance imaging. PLoS ONE. 2015;10(7):e0133480.CrossRefGoogle Scholar
  104. 104.
    Pan Y, et al.: Brain tumor grading based on neural networks and convolutional neural networks. In: 37th IEEE annual international conference of engineering in medicine and biology society (EMBC); 2015.Google Scholar
  105. 105.
    Mesnil G, et al.: Unsupervised and transfer learning challenge: a deep learning approach. In: ICML unsupervised and transfer learning, vol. 27; 2012. p. 97–110.Google Scholar
  106. 106.
    Weizman L, et al. Automatic segmentation of optic pathway gliomas in MRI. In: Biomedical imaging: from nano to macro, 2010 IEEE international symposium on. IEEE; 2010.Google Scholar

Copyright information

© Korean Society of Medical and Biological Engineering and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of Engineering and TechnologyLahorePakistan
  2. 2.College of Computer and Information SciencesPrince Sultan UniversityRiyadhSaudi Arabia
  3. 3.College of Computer and Information SystemsAl-Yamamah UniversityRiyadhSaudi Arabia

Personalised recommendations