Biomedical Engineering Letters

, Volume 6, Issue 1, pp 10–15 | Cite as

Graphene and thermo-responsive polymeric nanocomposites for therapeutic applications

Review Article
Part of the following topical collections:
  1. International Biomedical Engineering Conference (IBEC) 2015

Abstract

Functional nanomaterials are of great benefit for various therapeutic applications. Recently, the advanced emerging nanotechnology enables the synthesis of drug-loaded multifunctional graphene and thermo-responsive polymeric nanomaterials. Given the physical and biochemical properties of multi-functional graphene and thermo-responsive polymeric nanomaterials, they hold the powerful potential for therapeutic applications. In this paper, we review various graphene and thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) nanocomposites and highlight their therapeutic applications.

Keywords

Graphene Thermo-responsive polymer Nanocomposite Therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Langer R. Drug delivery. Drugs on target. Science. 2001; 293(5527):58–9.Google Scholar
  2. [2]
    Mainardes RM, Silva LP. Drug delivery systems: past, present, and future. Curr Drug Targets. 2004; 5(5):449–55.CrossRefGoogle Scholar
  3. [3]
    Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H. Carbon materials for drug delivery & cancer therapy. Mater Today. 2011; 14(7-8):316–23.CrossRefGoogle Scholar
  4. [4]
    Kim J, Piao Y, Hyeon T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev. 2009; 38(2):372–90.CrossRefGoogle Scholar
  5. [5]
    Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007; doi:10.1038/nmat1849.Google Scholar
  6. [6]
    Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature. 2012; 490(7419):192–200.CrossRefGoogle Scholar
  7. [7]
    Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev. 2010; 39(1):228–40.CrossRefGoogle Scholar
  8. [8]
    Gao X, Jang J, Nagase S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C. 2010; 114(2):832–42.CrossRefGoogle Scholar
  9. [9]
    Zhou X, Zhang J, Wu H, Yang H, Zhang J, Guo S. Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. J Phys Chem C. 2011; 115(24):11957–61.CrossRefGoogle Scholar
  10. [10]
    Goìmez-Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M, Kern K, Kaiser U. Atomic structure of reduced graphene oxide. Nano Lett. 2010; 10(4):1144–8.CrossRefGoogle Scholar
  11. [11]
    Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S. Reduction of graphene oxide vial-ascorbic acid. Chem Commun. 2010; 46(7):1112–4.CrossRefGoogle Scholar
  12. [12]
    Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater. 2008; 20(23):4490–3.CrossRefGoogle Scholar
  13. [13]
    Kuila T, Mishra AK, Khanra P, Kim NH, Lee JH. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale. 2013; 5(1):52–71.CrossRefGoogle Scholar
  14. [14]
    Pei S, Cheng H-M. The reduction of graphene oxide. Carbon. 2012; 50(9):3210–28.CrossRefGoogle Scholar
  15. [15]
    Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem. 2006; 384(3):620–30.CrossRefGoogle Scholar
  16. [16]
    Lomas H, Massignani M, Abdullah KA, Canton I, Lo Presti C, MacNeil S, Du J, Blanazs A, Madsen J, Armes SP, Lewis AL, Battaglia G. Non-cytotoxic polymer vesicles for rapid and efficient intracellular delivery. Faraday Discuss. 2008; 139(1): 143–59.CrossRefGoogle Scholar
  17. [17]
    Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci. 2004; 29(12):1173–222.CrossRefGoogle Scholar
  18. [18]
    Zhang X-Z, Yang Y-Y, Chung T-S, Ma K-X. Preparation and characterization of fast response macroporous poly(Nisopropylacrylamide) hydrogels. Langmuir. 2001; 17(20):6094–9.CrossRefGoogle Scholar
  19. [19]
    Zareie HM, Bulmus EV, Gunning AP, Hoffman AS, Piskin E, Morris VJ. Investigation of a stimuli-responsive copolymer by atomic force microscopy. Polymer. 2000; 41(18):6723–7.CrossRefGoogle Scholar
  20. [20]
    Sun S, Wu PA. one-step strategy for thermal-and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J Mater Chem. 2011; 21(12):4095–7.CrossRefGoogle Scholar
  21. [21]
    Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Gioffredi E, Malucelli G, Marceddu S, Sechi M, Sanna V, Mariani A. Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization. J Mater Chem. 2011; 21(24):8727–33.CrossRefGoogle Scholar
  22. [22]
    Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules. 2010; 43(16):6515–30.CrossRefGoogle Scholar
  23. [23]
    Qi J, Lv W, Zhang G, Zhang F, Fan X. Poly(Nisopropylacrylamide) on two-dimensional graphene oxide surfaces. Polym Chem. 2012; 3(3):621–4.CrossRefGoogle Scholar
  24. [24]
    Pan Y, Bao H, Sahoo NG, Wu T, Li L. Water-soluble poly(Nisopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Adv Funct Mater. 2011; 21(14): 2754–63.CrossRefGoogle Scholar
  25. [25]
    Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, Cui D. Biocompatibility of graphene oxide. Nanoscale Res Lett. 2011; 6(1):8.Google Scholar
  26. [26]
    Wu S, Zhao X, Cui Z, Zhao C, Wang Y, Du L, Li Y. Cytotoxicity of graphene oxide and graphene oxide loaded with doxorubicin on human multiple myeloma cells. Int J Nanomedicine. 2014; 9(1):1413–21.Google Scholar
  27. [27]
    Hu X, Zhou Q. Health and ecosystem risks of graphene. Chem Rev. 2013; 113(5):3815–35.CrossRefGoogle Scholar
  28. [28]
    Chang Y, Yang S-T, Liu J-H, Dong E, Wang Y, Cao A, Liu Y, Wang H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett. 2011; 200(3):201–10.CrossRefGoogle Scholar
  29. [29]
    Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013; 9(12):9243–57.CrossRefGoogle Scholar
  30. [30]
    Liu K, Zhang J-J, Cheng F-F, Zheng T-T, Wang C, Zhu J-J. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem. 2011; 21(32):12034–40.CrossRefGoogle Scholar
  31. [31]
    Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012; 112(11):6156–214.CrossRefGoogle Scholar
  32. [32]
    Depan D, Shah J, Misra RDK. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Mater Sci Eng C. 2011; 31(7):1305–12.CrossRefGoogle Scholar
  33. [33]
    Kang A, Seo HI, Chung BG, Lee SH. Concave microwell arraymediated three-dimensional tumor model for screening anticancer drug-loaded nanoparticles. Nanomedicine. 2015; 11(5):1153–61.CrossRefGoogle Scholar
  34. [34]
    Seo HI, Cho AN, Jang J, Kim DW, Cho SW, Chung BG. Thermo-responsive polymeric nanoparticles for enhancing neuronal differentiation of human induced pluripotent stem cells. Nanomedicine. 2015; 11(7):1861–9.CrossRefGoogle Scholar
  35. [35]
    Weissleder R. Clearer vision for in vivo imaging. Nat Biotechnol. 2001; 19(4):316–7.CrossRefGoogle Scholar
  36. [36]
    Kim H, Lee D, Kim J, Kim TI, Kim WJ. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano. 2013; 7(8):6735–46.CrossRefGoogle Scholar
  37. [37]
    Lu N, Liu J, Li J, Zhang Z, Weng Y, Yuan B, Yang K, Ma Y. Tunable dual-stimuli response of a microgel composite consisting of reduced graphene oxide nanoparticles and poly(Nisopropylacrylamide) hydrogel microspheres. J Mater Chem B. 2014; 2(24):3791–8.CrossRefGoogle Scholar
  38. [38]
    Wan H, Zhang Y, Liu Z, Xu G, Huang G, Ji Y, Xiong Z, Zhang Q, Dong J, Zhang W, Zou H. Facile fabrication of a nearinfrared responsive nanocarrier for spatiotemporally controlled chemo-photothermal synergistic cancer therapy. Nanoscale. 2014; 6(15):8743–53.CrossRefGoogle Scholar
  39. [39]
    Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev. 2013; 42(2):530–47.CrossRefGoogle Scholar
  40. [40]
    Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials. 2011; 32(3):8555–61.CrossRefGoogle Scholar

Copyright information

© Korean Society of Medical and Biological Engineering and Springer-Verlag GmbH Germany, part of Springer Nature 2016

Authors and Affiliations

  • Hye In Seo
    • 1
  • Yeong Ah Cheon
    • 1
  • Bong Geun Chung
    • 1
  1. 1.Department of Mechanical EngineeringSogang UniversitySeoulKorea

Personalised recommendations