Skip to main content
Log in

Classification of magnetic resonance brain images using bi-dimensional empirical mode decomposition and autoregressive model

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

Automated classification of brain magnetic resonance (MR) images has been an extensively researched topic in biomedical image processing. In this work, we propose a new approach for classifying normal and abnormal brain MR images using bi-dimensional empirical mode decomposition (BEMD) and autoregressive (AR) model

Methods

In our approach, brain MR image is decomposed into four intrinsic mode functions (IMFs) using BEMD and AR coefficients from multiple IMFs are concatenated to form a feature vector. Finally a binary classifier, least-squares support vector machine (LS-SVM), is employed to discriminate between normal and abnormal brain MR images.

Results

The proposed technique achieves 100% classification accuracy using second-order AR model with linear and radial basis function (RBF) as kernels in LS-SVM.

Conclusions

Experimental results confirm that the performance of the proposed method is quite comparable with the existing results. Specifically, the presented approach outperforms one-dimensional empirical mode decomposition (1D-EMD) based classification of brain MR images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar EP, Sumithra MG, Kumar PS. Abnormality detection in brain MRI/CT using segmentation algorithm and 3D visualization. Conf Proc Int Conf Adv Comput. 2013; 1:56–62.

    Google Scholar 

  2. Nandpuru HB, Salankar SS, Bora VR. MRI brain cancer classification using support vector machine. Conf Proc IEEE Std Conf Electr Electron Comput Sci. 2014; 1:1–6.

    Google Scholar 

  3. Lahmiri S, Boukadoum M. Automatic detection of Alzheimer disease in brain magnetic resonance images using fractal features. Conf Proc IEEE/EMBS Neural Eng. 2013; 1:1505–8.

    Google Scholar 

  4. Blonda P, Satalino G, Baraldi A, De Blasi R. Segmentation of multiple sclerosis lesions in MRI by fuzzy neural networks: FLVQ and FOSART. Conf Proc Conf North American Fuzzy Information Process Soc. 1998; 1:39–43.

    Google Scholar 

  5. Chaplot S, Patnaik LM, Jagannathan NR. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control. 2006; 1(1):86–92.

    Article  Google Scholar 

  6. Zhang Y, Dong Z, Wu L, Wang S. A hybrid method for MRI brain image classification. Expert Syst Appl. 2011; 38(8):10049–53.

    Article  Google Scholar 

  7. Lahmiri S, Boukadoum M. Hybrid discrete wavelet transform and gabor filter banks processing for features extraction from biomedical images. J Med Eng. 2013; doi: 10.1155/2013/104684.

    Google Scholar 

  8. Abdullah N, Ngah UK, Aziz SA. Image classification of brain MRI using support vector machine. Conf Proc IEEE Int Conf Imaging Syst Tech. 2011; 1:242–7.

    Google Scholar 

  9. Fletcher-Heath LM1, Hall LO, Goldgof DB, Murtagh FR. Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med. 2001 Jan-Mar; 21(1-3):43–63.

    Article  Google Scholar 

  10. Maitra M, Chatterjee A. Hybrid multiresolution Slantlet transform and fuzzy c-means clustering approach for normal pathological brain MR image segregation. Med Eng Phys. 2008; 30(5):615–23.

    Article  Google Scholar 

  11. Htike KK, Khalifa OO. Comparison of supervised and unsupervised learning classifiers for human posture recognition. Conf Proc Int Conf Comput Commun Eng. 2010; 1:1–6.

    Google Scholar 

  12. El-Dahshan ES, Hosny T, Salem ABM. Hybrid intelligent techniques for MRI brain images classification. Digit Signal Process. 2010; 20(2):433–41.

    Article  Google Scholar 

  13. Hackmack K, Paul F, Weygandt M, Allefeld C, Haynes JD. Multi-scale classification of disease using structural MRI and wavelet transform. Neuroimage. 2012; 62(1):48–58.

    Article  Google Scholar 

  14. Kalbkhani H, Shayesteh MG, Zali-Vargahan B. Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series. Biomed Signal Process Control. 2013; 8(6):909–19.

    Article  Google Scholar 

  15. Maitra M, Chatterjee A. A Slantlet transform based intelligent system for magnetic resonance brain image classification. Biomed Signal Process Control. 2006; 1(4):299–306.

    Article  Google Scholar 

  16. Saritha M, Joseph KP, Mathew AT. Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recognit Lett. 2013; 34(16):2151–6.

    Article  Google Scholar 

  17. Lahmiri S, Boukadoum M. Brain MRI classification using an ensemble system and LH and HL wavelet sub-bands features. Conf Proc IEEE Int Workshop Comput Intell Med Imaging. 2011; 1:1–7.

    Google Scholar 

  18. Lahmiri S, Boukadoum M. An application of the empirical mode decomposition to brain magnetic resonance images classification. Conf Proc IEEE Latin American Symp Circuit Syst. 2013; 1:1–4.

    Google Scholar 

  19. El-Dahshan ES, Mohsen HM, Revett K, Salem AB. Computeraided diagnosis of human brain tumor through MRI: A survey and a new algorithm. Expert Syst Appl. 2014; 41(11):5526–45.

    Article  Google Scholar 

  20. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Conf R Soc Lond. 1998; 454(4):903–95.

    Article  MathSciNet  MATH  Google Scholar 

  21. Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank. IEEE Signal Process Lett. 2004; 11(2):112–4.

    Article  Google Scholar 

  22. Nunes JC, Bouaoune Y, Delechelle E, Niang O, Bunel Ph. Image analysis by bidimensional empirical mode decomposition. Image Vision Comput. 2003; 21(12):1019–26.

    Article  MATH  Google Scholar 

  23. Kumar TS, Kanhangad V, Pachori RB. Classification of seizure and seizure-free EEG signals using multi-level local patterns. Conf Proc Int Conf Digit Signal Process. 2014; 1:646–50.

    Google Scholar 

  24. Pachori RB. Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res Lett Signal Process. 2008; doi: 10.1155/2008/293056.

    Google Scholar 

  25. Pachori RB, Sharma R, Patidar S. Classification of normal and epileptic seizure EEG signals based on empirical mode decomposition. Complex Syst Model Control Intell Soft Comput. 2015; 319:367–88.

    Google Scholar 

  26. Sharma R, Pachori RB, Acharya UR. Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals. Entropy. 2015; 17(2):669–91.

    Article  Google Scholar 

  27. Pachori RB, Patidar S. Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput Methods Programs Biomed. 2014; 113(2):494–502.

    Article  Google Scholar 

  28. Sharma R, Pachori RB. Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst Appl. 2015; 42(3):1106–17.

    Article  Google Scholar 

  29. Pachori RB, Bajaj V. Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Computer Methods Programs Biomed. 2011; 104(3):373–81.

    Article  Google Scholar 

  30. Parey A, Pachori RB. Variable cosine windowing of intrinsic modefunctions: Application to gear fault diagnosis. Measurement. 2012; 45(3):415–26.

    Article  Google Scholar 

  31. Pachori RB, Hewson D, Snoussi H, Duchene J. Postural timeseries analysis using empirical mode decomposition and second-order difference plots. Conf Proc IEEE Int Conf Acoust Speech Signal Process. 2009; 1:537–40.

    Google Scholar 

  32. Huang H, Pan J. Speech pitch determination based on Hilbert-Huang transform. Signal Process. 2006; 86(4):792–803.

    Article  MATH  Google Scholar 

  33. Nunes JC, Guyot S, Delchelle E. Texture analysis based on local analysis of the bidimensional empirical mode decomposition. Machin Vis Appl. 2005; 16(3):177–88.

    Article  Google Scholar 

  34. Soille P. Morphological image analysis: principles and applications. 2nd ed. Berlin Heidelberg: Springer-Verlag; 2004.

    Book  MATH  Google Scholar 

  35. Carr JC, Fright WR, Beatson RK. Surface interpolation with radial basis functions for medical imaging. IEEE Trans Med Imaging. 1997; 16(1):96–107.

    Article  Google Scholar 

  36. Nunes JC, Niang O, Bouaoune Y, Delechelle E, Bunel Ph. Texture analysis based on the bidimensional empirical mode decomposition with gray-level co-occurrence models. Conf Proc Int Symp Singal Process Appl. 2003; 2:633–5.

    MATH  Google Scholar 

  37. Qiao L-H, Guo W, Yuan W-T, Niu K-F, Peng L-Z. Texture analysis based on bidimensional empirical mode decomposition and quaternions. Conf Proc Int Conf Wavelet Anal Pattern Recognit. 2009; 1:84–90.

    Google Scholar 

  38. Bhuiyan SMA, Adhami RR, Ranganath HS, Khan JF. Aurora image denoising with a modified bidimensional empirical mode decomposition method. IEEE Southeastcon. 2008; 1:527–32.

    Google Scholar 

  39. Taghia J, Doostari MA, Taghia J. An image watermarking method based on bidimensional empirical mode decomposition. Conf Proc IEEE Congress Image Signal Process. 2008; 5:674–8.

    Google Scholar 

  40. Chen WK, Lee JC, Han WY, Shih CK, Chang KC. Iris recognition based on bidimensional empirical mode decomposition and fractal dimension. Information Sci. 2013; (221):439–51.

    Article  Google Scholar 

  41. Ahmed MU, Mandic DP. Image fusion based on fast and adaptive bidimensional empirical mode decomposition. Proc 13th Conf on Information Fusion. 2010; 1–6.

    Google Scholar 

  42. Wan J, Ren L, Zhao C. Image feature extraction based on the two-dimensional empirical mode decomposition. Conf Proc IEEE Congress Image Signal Process. 2008; 1:627–31.

    Google Scholar 

  43. He Z, Wang Q, Shen Y, Jin J, Wang Y. Multivariate gray modelbased BEMD for hyperspectral image classification. IEEE T Instrum Meas. 2013; 62(5):889–904.

    Article  Google Scholar 

  44. Ling L, Ming L, YuMing L. Texture classification and segmentation based on bidimensional empirical mode decomposition and fractal dimension. Conf Proc Int Workshop Educ Technol Comput Sci. 2009; 2:574–7.

    Google Scholar 

  45. MATLAB central file exchange. ttp://www.mathworks.com/matlabcentral/fileexchange/28761-bi-dimensional-emperical-modedecomposition—bemd-/content/bemd.m Accessed september 2014.

  46. Nam M, Lee Y. 2D AR (1,1) analysis of blurring image by empirical mode decomposition. Comput Appl Web Hum Comput Signal Image Process Pattern Recognit. 2012; 342:118–25.

    Google Scholar 

  47. Dubois SR, Glanz FH. An autoregressive model approach to two-dimensional shape classification. IEEE T PATTERN ANAL. 1986; 8(1):55–66.

    Article  Google Scholar 

  48. Anderson CW, Stolz EA, Shamsunder S. Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks. IEEE Trans Biomed Eng. 1998; 45(3):277–86.

    Article  Google Scholar 

  49. Vuksanovic B, Alhamdi M. AR-based method for ECG classification and patient recognition. Int J Biom Bioinform. 2013; 7(2):74–92.

    Google Scholar 

  50. Deguchi K. Two-dimensional auto-regressive model for analysis and sythesis of gray-level textures. Conf Proc Int Symp Sci Form.

  51. Vapnik VN. The nature of statistical learning theory. 2nd ed. Berlin Heidelberg: Springer-Verlag; 1995.

    Book  MATH  Google Scholar 

  52. Suykens J, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett. 1999; 9(3):293–300.

    Article  MathSciNet  MATH  Google Scholar 

  53. Khandoker AH, Lai DT, Begg RK, Palaniswami M. Waveletbased feature extraction for support vector machines for screening balance impairments in the elderly. IEEE Trans Neural Syst Rehabil Eng. 2007; 15(4):587–97.

    Article  Google Scholar 

  54. Bajaj V, Pachori RB. Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans Inf Technol Biomed. 2012; 16(6):1135–42.

    Article  Google Scholar 

  55. Joshi V, Pachori RB, Vijesh A. Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed Signal Process Control. 2014; 9:1–5.

    Article  Google Scholar 

  56. Polat K, Akdemir B, Gunes S. Computer aided diagnosis of ECG data on the least square support vector machine. Digit Signal Process. 2008; 18(1):25–32.

    Article  Google Scholar 

  57. Yan Z, You X, Chen J, Ye X. Motion classification of EMG signals based on wavelet packet transform and LS-SVMs ensemble. Trans Tianjin Univ. 2009; 15(4):300–7.

    Article  Google Scholar 

  58. Das S, Chowdhury M, Kundu MK. Brain MR image classification using multiscale geometric analysis of ripplet. Prog Electromagn Res. 2013; 137:1–17.

    Article  Google Scholar 

  59. AANLIB database of Harward medical school. http://www.med.harvard.edu/aanlib/. Accessed september 2014.

  60. Freund RJ, Mohr D, Wilson WJ. Statistical Methods. 3rd ed. San Diego: Academic Press; 2010.

    MATH  Google Scholar 

  61. Azar AT, El-Said SA. Performance analysis of support vector machines classifiers in breast cancer mammography recognition. Neural Comput Appl. 2014; 24(5):1163–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kanhangad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, O., Anand, V., Kanhangad, V. et al. Classification of magnetic resonance brain images using bi-dimensional empirical mode decomposition and autoregressive model. Biomed. Eng. Lett. 5, 311–320 (2015). https://doi.org/10.1007/s13534-015-0208-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-015-0208-9

Keywords

Navigation