Skip to main content
Log in

A knowledge-based real time embedded platform for arrhythmia beat classification

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

This paper aims for accurate classification of ECG beats in real-time.

Methods

The design, implementation and results of FPGA oriented SOC based embedded platform in laboratory experimental setup is presented. The platform is designed using high-level systematic approach having the capability of real-time classification of ECG beats at the place of patients with high accuracy which will be helpful to enhance the healthcare for cardiovascular diseases. The algorithm involves the integration of the R-peak detection algorithm and Rulebased approach to classify four generic heartbeat classes namely Normal, PVC, Ventricular Fibrillation/Ventricular Flutter, 2° heart block beat. The aforesaid algorithms are performed in software on an integrated TSK3000A processor core (IP cores used) and implemented in hardware targeting FPGA (Xilinx Spartan 3AN). The developed platform is validated by generating real-time ECG beats using MIT-BIH arrhythmia database.

Results

The performance of the proposed implementation is evaluated in terms of sensitivity, specificity, positive predictivity and accuracy which is 97.72%, 99.09%, 96.46% and 97.96% respectively.

Conclusions

The proposed hardware/software implementation has yielded improved results in comparison to the existing methodologies implemented on the FPGA platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu YH, Palreddy S, Tompkins WJ. A patient-adaptable ECG beat classifier using a mixture of experts approach. IEEE T Biomed Eng. 1997; 44(9):891–900.

    Article  Google Scholar 

  2. Cano-Garcia JM, Gonzalez-Parada E, Alarcon-Collantes V, Casilari-Perez E. A PDA-based portable wireless ECG monitor for medical personal area networks. Conf Proc IEEE Mediterr Electrotech Conf. 2006; 713–6.

    Google Scholar 

  3. Chung WY, Yau CL, Shin KS, Myllyla R. A cell phone based health monitoring system with self analysis processor using wireless sensor network technology. Conf Proc IEEE Eng Med Biol Soc. 2007; 3705–8.

    Google Scholar 

  4. Lee TS, Hong JH, Cho MC. Biomedical digital assistant for ubiquitous healthcare. Conf Proc IEEE Eng Med Biol Soc. 2007; 1790–3.

    Google Scholar 

  5. Chen X, Ho CT, Lim ET, Kyaw TZ. Cellular phone based online ECG processing for ambulatory and continuous detection. Comput Cardiol. 2007; 34(2):653–6.

    Google Scholar 

  6. Goh KW, Lavanya J, Kim Y, Tan EK, Soh CB. A PDA-based ecg beat detection for home cardiac care. Conf Proc IEEE Eng Med Biol Soc. 2005(1); 375–8.

    Google Scholar 

  7. Rodriguez J, Goi A, Illarramendi A. Real-time classification of ecgs on a PDA. IEEE Trans Inf Tech Biomed. 2005; 9(1):23–34.

    Article  Google Scholar 

  8. Jin Z, Sun Y, Cheng AC. Predicting cardiovascular disease from real-time electrocardiographic monitoring: An adaptive machine learning approach on a cell phone. Conf Proc IEEE Eng Med Biol Soc. 2009; 6889–92.

    Google Scholar 

  9. Chazel PD, O'Dwyer M, Reilly RB. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE T Biomed Eng. 2004; 51(7):1196–206.

    Article  Google Scholar 

  10. Hu YH, Tomkins WJ, Urrusti JL, Afonso VX. Application of artificial neural networks for ECG signal detection and classification. J Electrocardiol. 1993; 26:66–73.

    Google Scholar 

  11. Chazal PD, Reilly RB. A patient adapting heart beat classifier using ECG morphology and heartbeat interval fatures. IEEE T Bio-med Eng. 2006; 53(12):2535–43.

    Article  Google Scholar 

  12. Minami K, Nakajima H, Toyoshima T. Real-time discrimination of ventricular tachyarrhythmia with fourier-transform neural network. IEEE T Biomed Eng. 1999; 46(2):179–85.

    Article  Google Scholar 

  13. Melgani F, Bazi Y. Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans Inf Tech Biomed. 2008; 12(5):667–77.

    Article  Google Scholar 

  14. Osowski S, Linh TH, Markiewicz T. Support vector machinebased expert system for reliable heartbeat recognition. IEEE T Bio-med Eng. 2004; 51(4):582–9.

    Article  Google Scholar 

  15. Osowski S, Linh TL. ECG beat recognition using fuzzy hybrid neural network. IEEE T Biomed Eng. 2001; 48(11):1265–71.

    Article  Google Scholar 

  16. Lagerholm M, Peterson G, Braccini C, Edenbrandt L, Sornmo L. Clustering ECG complexes using hermite functions and selforganizing maps. IEEE T Biomed Eng. 2000; 47(7):838–48.

    Article  Google Scholar 

  17. Senhadji L, Carrault G, Bellanger JJ, Passariello G. Comparing wavelet transforms for recognizing cardiac patterns. IEEE Eng Med Biol. 1995; 14(2):167–73.

    Article  Google Scholar 

  18. Linh T, Osowski SL, Stodoloski M. On-line heart beat recognition using hermite polynomials and neuron-fuzzy network. IEEE T Instrum Meas. 2003; 52(4):1224–31.

    Article  Google Scholar 

  19. Cvikl M, Zemva A. FPGA-oriented HW/SW implementation of ECG beat detection and classification algorithm. Dig Sig Proc. 2010; 20(1):238–48.

    Article  Google Scholar 

  20. Ozdemir AT, Danisman K. Fully parallel ANN-based arrhythmia classifier on a single-chip FPGA. Turk J Elec Eng Comp Sci. 2011; 19(4):667–87.

    Google Scholar 

  21. Cvikl M, Zemva A. FPGA-based system for ECG beat detection and classification. Conf Proc IFMBE. 2007; 66–9.

    Google Scholar 

  22. Nambakhsh MS, Tavakoli V, Sahba N. FPGA-core defibrillator using waveletfuzzy ECG arrhythmia classification. Conf Proc IEEE Eng Med Biol Soc. 2008; 2673–6.

    Google Scholar 

  23. Tsipouras MG, Fotiadis DI, Sideris D. An arrhythmia classification system based on the RR-interval signal. Artif Intell Med. 2005; 33(3):237–50.

    Article  Google Scholar 

  24. Moody GB, Mark RG. The impact of MIT-BIH arrhythmia database. IEEE T Biomed Eng. 2001; 20(3):45–50.

    Google Scholar 

  25. Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE T Biomed Eng. 1985; 32(3):230–6.

    Article  Google Scholar 

  26. Inan OT, Giovangrandi L, Kovacs GT. Robust neural-networkbased classification of premature ventricular contractions using wavelet transform and timing interval features. IEEE T Biomed Eng. 2006; 53(12):2507–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Raj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, S., Maurya, K. & Ray, K.C. A knowledge-based real time embedded platform for arrhythmia beat classification. Biomed. Eng. Lett. 5, 271–280 (2015). https://doi.org/10.1007/s13534-015-0196-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-015-0196-9

Keywords

Navigation