Skip to main content
Log in

A generalized multiple classifier system for improving computer-aided classification of breast masses in mammography

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

The objective of this paper is to present a generalized multiple classifier system for improved classification of mammographic masses in Computer-aided detection (CAD).

Methods

To encourage different base (component) classifiers to learn different parts of an object instant space, we develop a novel base classifier generation algorithm which combines data resampling underpinning AdaBoost with the use of different feature representations. In addition, our proposed multiple classifier system can be generalized beyond the limitation of weak classifiers in conventional AdaBoost learning. To this end, our multiple classifier system has an effective and efficient mechanism for tuning the level of weakness of base classifiers.

Results

Extensive experiments have been performed using benchmark mammogram data set to test the proposed method on classification between mammographic masses and normal tissues. In addition, to assess classification performance, we used the area under the receiver operating characteristic (AUC) and the normalized partial area under the curve (pAUC). Results show that our method considerably outperforms (in terms of both AUC and pAUC) the most commonly used single neural network (NN) and support vector machine (SVM) based classification approaches. In particular, the effectiveness of our method in terms of correct classification is much more significant over difficult mammogram cases with dense tissues that have higher risk of cancer incidences and cause higher false-positive (FP) detections.

Conclusions

Our multiple classifier system shows quite promising results in terms of improving classification performances on the FP reduction application using classification between masses and normal tissues in mammography CAD systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kopans DB. Breast imaging. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  2. Kwon HJ, Shin BH, Gopaul D, Fienberg S. Strain ratio vs. modulus ratio for the diagnosis of breast cancer using elastography. Biomed Eng Lett. 2014; 4(3):292–300.

    Article  Google Scholar 

  3. Mert A, Kilic N, Akan A. An improved hybrid feature reduction for increased breast cancer diagnostic performance. Biomed Eng Lett. 2014; 4(3):285–91.

    Article  Google Scholar 

  4. Suri JS, Rangayyan RM. Recent advances in breast imaging, mammography, and computer-aided diagnosis of breast cancer. Washington: SPIE PRESS; 2006.

    Book  Google Scholar 

  5. Sampat MP. Computer-aided detection and diagnosis in mammography. In: Bovik AC. Handbook of image and video processing. 2nd ed. New York: Academic; 2005. pp. 1195–217.

    Chapter  Google Scholar 

  6. Tang J, Rangayyan RM, Xu J, El Naqa I, Yang Y. Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans Inf Technol Biomed. 2009; 13(2):236–51.

    Article  Google Scholar 

  7. Chan HP, Sahiner B, Wagner RF, Petrick N. Classifier design for computer-aided diagnosis: effects of finite sample size on the mean performance of classical and neural network classifiers. Med Phys. 1999; 26(12):2654–88.

    Article  Google Scholar 

  8. Cheng HD, Shi XJ, Min R, Hu LM, Cai XP, Du HN. Approaches for automated detection and classification of masses in mammograms. Pattern Recognit. 2006; 39(4):646–68.

    Article  Google Scholar 

  9. Berber T, Alpkocak A, Balci P, Dicle O. Breast mass contour segmentation algorithm in digital mammograms. Comput Methods Programs Biomed. 2013; 110(2):150–9.

    Article  Google Scholar 

  10. Bilska-Wolak AO, Floyd CE Jr. Tolerance to missing data using a likelihood ratio based classifier for computer-aided classification of breast cancer. Phys Med Biol. 2004; 49(18):4219–37.

    Article  Google Scholar 

  11. Mudigonda NR, Rangayyan RM, Desautels JEL. Gradient and texture analysis for the classification of mammographic masses. IEEE Trans Med Imaging. 2000; 19(10):1032–43.

    Article  Google Scholar 

  12. Jesneck JL, Nolte LW, Baker JA, Floyd CE, Lo JY. Optimized approach to decision fusion of heterogeneous data for breast cancer diagnosis. Med Phys. 2006; 33(8):2945–54.

    Article  Google Scholar 

  13. Wei D, Chan HP, Petrick N, Sahiner B, Helvie MA, Adler DD, Goodsitt MM. False-positive reduction technique for detection of masses on digital mammograms: global and local multiresolution texture analysis. Med Phys. 1997; 24(6):903–14.

    Article  Google Scholar 

  14. Kuncheva LI. Combining pattern classifiers: methods and algorithms. New York: Wiley; 2004.

    Book  MATH  Google Scholar 

  15. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997; 55(1):119–39.

    Article  MathSciNet  MATH  Google Scholar 

  16. Constantinidis AS, Fairhurst MC, Rahman AFR. A new multiexpert decision combination algorithms and its application to the detection of circumscribed masses in digital mammograms. Pattern Recognit. 2001; 34(8):1527–37.

    Article  MATH  Google Scholar 

  17. Yoon SJ, Kim SJ. AdaBoost-based multiple SVM-RFE for classification of mammograms in DDSM. IEEE Int Conf Bioinf Biomed Workshops. 2008; 75–82.

    Google Scholar 

  18. Breiman L. Random forests. Mach Learning. 2001; 45(1):5–32.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lu J, Plataniotis KN, Venetsanopoulos AN, Li SZ. Ensembledbased discriminant learning with boosting for face recognition. IEEE Trans Neural Netw. 2006; 17(1):166–78.

    Article  Google Scholar 

  20. Murua A. Upper bounds for error rates of linear combinations of classifiers. IEEE Trans Pattern Anal Mach Intell. 2002; 24(5):591–602.

    Article  Google Scholar 

  21. Way TW, Sahiner B, Hadjiiski LM, Chan HP. Effect of finite sample size on feature selection and classification: a simulation study. Med Phys. 2010; 37(2):907–20.

    Article  Google Scholar 

  22. Wei L, Yang Y, Nishikawa RM, Jiang Y. A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications. IEEE Trans Med Imaging. 2005; 24(3):371–80.

    Article  Google Scholar 

  23. Sahiner B, Chan HP, Petrick N, Wei D, Helvie MA, Adler DD, Goodsitt MM. Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging. 1996; 15(5):598–609.

    Article  Google Scholar 

  24. Wei D, Chan HP, Helvie MA, Sahiner B, Petrick N, Adler DD, Goodsitt MM. Classification of mass and normal breast tissue on digital mammograms: multiresolution texture analysis. Med Phys. 1995; 22(9):1501–13.

    Article  Google Scholar 

  25. Mudigonda NR, Rangayyan RM, Desautels JEL. Detection of breast masses in mammograms by density slicing and texture flow-field analysis. IEEE Trans Med Imaging. 2001; 20(12):1215–27.

    Article  Google Scholar 

  26. Kupinski MA, Giger ML. Investigation of regularized neural networks for the computerized detection of mass lesions in digital mammograms. IEEE Int Conf Eng Med Biol Soc (EMBS). 1997; 3:1336–9.

    Google Scholar 

  27. Santo MD, Molinara M, Tortorella F, Vento M. Automatic classification of clustered microcalcifications by a multiple expert system. Pattern Recognit. 2003; 36(7):1467–77.

    Article  Google Scholar 

  28. Oliver A, Torrent A, Llado X, Tortajada M, Tortajada L, Sentis M, Freixenet J, Zwiggelaar R. Automatic microcalcification and cluster detection for digital and digitised mammograms. Knowledge-Based Syst. 2012; 28:68–75.

    Article  Google Scholar 

  29. Arod T, Kurdziel M, Sevre EO, Yuen DA. Pattern recognition techniques for automatic detection of suspicious-looking anomalies in mammograms. Comput Methods Programs Biomed. 2005; 79(2):135–49.

    Article  Google Scholar 

  30. Fung G, Krishnapuram B, Merlet N, Ratner E, Bamberger P, Stoeckel J, Rao RB. Addressing image variability while learning classifiers for detecting clusters of micro-calcifications. Int Conf Digit Mammogr. 2006; 4046:84–91.

    Article  Google Scholar 

  31. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting. Annal Stat. 2000; 28(2):337–407.

    Article  MathSciNet  MATH  Google Scholar 

  32. Dominguez AR, Nandi AK. Detection of masses in mammograms via statistically based enhancement, multilevel-thresholding segmentation, and region selection. Comput Med Imaging Graph. 2008; 32(4):304–15.

    Article  Google Scholar 

  33. Hong BW, Sohn BS. Segmentation of regions of interest in mammograms in a topographic approach. IEEE Trans Inf Technol Biomed. 2010; 14(1):129–39.

    Article  Google Scholar 

  34. Choi JY, Ro YM. Multiresolution local binary pattern texture analysis combined with variable selection for application to false positive reduction in computer-aided detection of breast masses on mammograms. Phys Med Biol. 2012; 57(21):7029–52.

    Article  Google Scholar 

  35. Sahiner B, Chan HP, Petrick N, Helvie MA, Hadjiiski LM. Improvement of mammographic mass characterization using speculation measures and morphological features. Med Phys. 2001; 28(7):1455–65.

    Article  Google Scholar 

  36. Sahiner B, Chan HP, Petrick N, Helvie MA, Goodsitt MM. Computerized characterization of masses on mammograms: the rubber band straightening transform and texture analysis. Med Phys. 1998; 25(4):516–26.

    Article  Google Scholar 

  37. Shavlik JW, Mooney RJ, Towell GG. Symbolic and neural learning algorithms: an experimental comparison. Mach Learn. 1991; 6(2):111–43.

    MATH  Google Scholar 

  38. Raudys SJ, Jain AK. Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans Pattern Anal Mach Intell. 1991; 13(3):252–64.

    Article  Google Scholar 

  39. Alimoglu F, Alpaydin E. Combining multiple representations and classifiers for pen-based handwritten digit recognition. Turk J Electr Eng. 2001; 9(1):1–12.

    Google Scholar 

  40. Rokach L. Ensemble-based classifiers. Artif Intell Rev. 2010; 33(1):1–39.

    Article  MathSciNet  Google Scholar 

  41. Ranawana R, Palade V. Multi-classifier systems: Review and a roadmap for developers. Int J Hybrid Intell Syst. 2006; 3(1):35–61.

    MATH  Google Scholar 

  42. Heath M, Bowyer K, Kopans D, Moore R, Kegelmeyer PJ. The digital database for screening mammography. Int Conf Digit Mammography. 2000; 212–8.

    Google Scholar 

  43. Catarious DM Jr, Baydush AH, Floyd CE Jr. Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system. Med Phys. 2004; 31(6):1512–20.

    Article  Google Scholar 

  44. Eltonsy NH, Tourassi GD, Elmaghraby AS. A concentric morphology model for the detection of masses in mammography. IEEE Trans Med Imaging. 2007; 26(6):880–9.

    Article  Google Scholar 

  45. Zhou XH, McClish DK, Obuchowski NA. Statistical methods in diagnostic medicine. New York: Wiley-Interscience; 2002.

    Book  MATH  Google Scholar 

  46. Sahiner B, Chan HP, Petrick N, Helvie MA, Goodsitt MM. Design of a high-sensitivity classifier based on a genetic algorithm: application to computer-aided diagnosis. Phys Med Biol. 1998; 43(10):2853–71.

    Article  Google Scholar 

  47. Vapnik VN. Statistical learning theory. New York: Wiley; 1998.

    MATH  Google Scholar 

  48. Setiono R. Feedforward neural network construction using cross validation. Neural Comput. 2001; 13(12):2865–77.

    Article  MATH  Google Scholar 

  49. Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011; 2(3):1–27.

    Article  Google Scholar 

  50. Jain A, Nandakumar K, Ross A. Score normalization in multimodal biometric systems. Pattern Recognit. 2005; 38(12):2270–85.

    Article  Google Scholar 

  51. Mangai UG, Samanta S, Das S, Chowdhury PR. A survey of decision fusion and feature fusion strategies for pattern classification. IETE Tech Rev. 2010; 27(4):293–307.

    Article  Google Scholar 

  52. Nishikawa RM. Current status and future directions of computeraided diagnosis in mammography. Comput Med Imaging Graph. 2007; 31(4):5–224.

    Google Scholar 

  53. Ruta D, Gabrys B. Classifier selection for majority voting. Inf Fusion. 2005; 6(1):63–81.

    Article  MATH  Google Scholar 

  54. Wei X, Zhou C, Zhang Q. ICA-based feature fusoin for face recognition. Int J Innov Comput Inf Control. 2010; 6(10):4651–61.

    Google Scholar 

  55. Naik GR, Kumar DK. An overview of independent component analysis and its applications. Inform. 2011; 35(1):63–81.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Young Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.Y. A generalized multiple classifier system for improving computer-aided classification of breast masses in mammography. Biomed. Eng. Lett. 5, 251–262 (2015). https://doi.org/10.1007/s13534-015-0191-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-015-0191-1

Keywords

Navigation