Biomedical Engineering Letters

, Volume 4, Issue 4, pp 328–337 | Cite as

Automatic cell identification in the unique system of invariant embryogenesis in Caenorhabditis elegans

Review Article

Abstract

In recent years, development of image processing methods has rapidly progressed to automatically identify spatiotemporal dynamics of embryonic cells in Caenorhabditis elegans. The methods allow quantitative and high-throughput analysis for molecular dynamics during embryogenesis. In turn, the analyzed dynamics can be merged onto a reference embryo, providing an integrated view of embryogenesis. This integration is enabled by invariant embryogenesis of C. elegans, which is the most unique advantage offered by this organism. Therefore, the key point in the development of the methods is how to take advantage of this feature. In this article, we review a series of development of such methods and their applications. First, we describe basic image processing methods that are the basis for development of cell identification methods. Next, we describe methods that have succeeded to identify cells in images and their performance. Finally, we review studies that have employed cell identification methods to analyze the variability of cellular dynamics, cellcell contacts and cell fate determination. Together with advances in imaging technologies to measure molecular dynamics and computational methods to identify such dynamics with high accuracy, the unique system of invariant embryogenesis in C. elegans will be invaluable to study developmental mechanisms. Therefore, it is important to understand the ever developing technologies and their results.

Keywords

Bioimage informatics Image processing Cell tracking Caenorhabditis elegans 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ankeny R. The natural history of Caenorhabditis elegans research. Nat Rev Genet. 2001; 2(6):474–9.CrossRefGoogle Scholar
  2. [2]
    Sulston J, Schierenberg E, White J, Thomson J. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983; 100(1):64–119.CrossRefGoogle Scholar
  3. [3]
    Riddle DL, Blumenthal T, Meyer BJ, Priess JR. C. elegans II. 2nd ed. NY USA: Cold Spring Harbor Laboratory Press; 19–7.Google Scholar
  4. [4]
    Onami S, Hamahashi S, Nagasaki M, Miyano S KH. Automatic acquisition of cell lineage through 4D microscopy and analysis of early C. elegans embryogenesis. In: Kitano H. Foundations of Systems Biology. London: The MIT Press; 2001. pp. 39–55.Google Scholar
  5. [5]
    Hamahashi S, Onami S, Kitano H. Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object tracking. BMC Bioinformatics. 2005; 6–125.Google Scholar
  6. [6]
    Bao Z, Murray JI, Boyle T, Ooi SL, Sandel MJ, Waterston RH. Automated cell lineage tracing in Caenorhabditis elegans. Proc Natl Acad Sci USA 2006; 103(8):2707–12.CrossRefGoogle Scholar
  7. [7]
    Azuma Y, Onami S. Evaluation of the effectiveness of simple nuclei-segmentation methods on Caenorhabditis elegans embryogenesis images. BMC Bioinformatics. 2013; 14–295.Google Scholar
  8. [8]
    Long F, Peng H, Myers E. Automatic segmentation of nuclei in 3D microscopy images of C. Elegans. Conf Proc IEEE Int Symp Biomed Imaging Nano Macro. 2007; 1:536–9.Google Scholar
  9. [9]
    Santella A, Du Z, Nowotschin S, Hadjantonakis A-K, Bao Z. A hybrid blob-slice model for accurate and efficient detection of fluorescence labeled nuclei in 3D. BMC Bioinformatics. 2010; 11–580.Google Scholar
  10. [10]
    Luengo-Oroz MA, Ledesma-Carbayo MJ, Peyriéras N, Santos A. Image analysis for understanding embryo development: a bridge from microscopy to biological insights. Curr Opin Genet Dev. 2011; 21(5):630–7.CrossRefGoogle Scholar
  11. [11]
    Uchida S. Image processing and recognition for biological images. Dev Growth Differ. 2013; 55(4):523–49.CrossRefGoogle Scholar
  12. [12]
    Giurumescu CA, Kang S, Planchon TA, Betzig E, Bloomekatz J, Yelon D, Cosman P, Chisholm AD. Quantitative semiautomated analysis of morphogenesis with single-cell resolution in complex embryos. Development. 2012; 139(22):4271–9.CrossRefGoogle Scholar
  13. [13]
    Malpica N, de Solórzano CO, Vaquero JJ, Santos A, Vallcorba I, García-Sagredo JM, del Pozo F. Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry. 1997; 28(4):289–97.CrossRefGoogle Scholar
  14. [14]
    Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell. 1991; 13(6):583–98.CrossRefGoogle Scholar
  15. [15]
    Roerdink JBTM, Meijster A. The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae. 2000; 41(1):187–228.MATHMathSciNetGoogle Scholar
  16. [16]
    Crandall R. Image segmentation using the Chan-Vese algorithm. 2009. http://math.arizona.edu/~rcrandall/ECE532_ProjectPaper.pdf. Accessed 07 Jan 2015.Google Scholar
  17. [17]
    Xiong Y, Iglesias PA. Tools for analyzing cell shape changes during chemotaxis. Integr Biol. (Camb). 2010; 2(11–12):561–7.CrossRefGoogle Scholar
  18. [18]
    Chen S, Zhao M, Wu G, Yao C, Zhang J. Recent advances in morphological cell image analysis. Comput Math Methods Med. 2012; doi: 10.1155/2012/101536.Google Scholar
  19. [19]
    Chan TF, Vese LA. Active Contours Without Edges. IEEE Trans Image Proc. 2001; 10(2):266–77.CrossRefMATHGoogle Scholar
  20. [20]
    Meijering E, Dzyubachyk O, Smal I, van Cappellen WA. Tracking in cell and developmental biology. Semin Cell Dev Biol. 2009; 20(8):894–902.CrossRefGoogle Scholar
  21. [21]
    Lin G, Adiga U, Olson K, Guzowski JF, Barnes CA, Roysam B. A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry A. 2003; 56(1):23–36.CrossRefGoogle Scholar
  22. [22]
    Keller PJ, Schmidt AD, Santella A, Khairy K, Bao Z, Wittbrodt J, Stelzer EHK. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat Methods. 2010; 7:637–42.CrossRefGoogle Scholar
  23. [23]
    Chinta R, Wasser M. Three-dimensional segmentation of nuclei and mitotic chromosomes for the study of cell divisions in live Drosophila embryos. Cytometry A. 2012; 81(1):52–64.CrossRefGoogle Scholar
  24. [24]
    Long F, Peng H, Liu X, Kim SK, Myers E. A 3D digital atlas of C. elegans and its application to single-cell analyses. Nat Methods. 2009; 6(9):667–72.CrossRefGoogle Scholar
  25. [25]
    Aerni SJ, Liu X, Do CB, Gross SS, Nguyen A, Guo SD, Long F, Peng H, Kim SS, Batzoglou S. Automated cellular annotation for high-resolution images of adult Caenorhabditis elegans. Bioinformatics. 2013; doi: 10.1093/bioinformatics/btt223.Google Scholar
  26. [26]
    Bao Z, Zhao Z, Boyle TJ, Murray JI, Waterston RH. Control of cell cycle timing during C. elegans embryogenesis. Dev Biol. 2008; 318(1):65–72.CrossRefGoogle Scholar
  27. [27]
    Hench J, Henriksson J, Lüppert M, Bürglin TR. Spatio-temporal reference model of Caenorhabditis elegans embryogenesis with cell contact maps. Dev Biol. 2009; 333(1):1–13.CrossRefGoogle Scholar
  28. [28]
    Richards JL, Zacharias AL, Walton T, Burdick JT, Murray JI. A quantitative model of normal Caenorhabditis elegans embryogenesis and its disruption after stress. Dev Biol. 2013; 374(1):12–23.CrossRefGoogle Scholar
  29. [29]
    Bao Z, Murray JI. Mounting Caenorhabditis elegans embryos for live imaging of embryogenesis. Cold Spring Harb Protoc. 2011; doi: 10.1101/pdb.prot065599.Google Scholar
  30. [30]
    Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA, Galbraith CG, Betzig E. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods. 2011; 8:417–23.CrossRefGoogle Scholar
  31. [31]
    Liu X, Long F, Peng H, Aerni SJ, Jiang M, Sánchez-Blanco A, Murray JI, Preston E, Mericle B, Batzoglou S, Myers EW, Kim SK. Analysis of cell fate from single-cell gene expression profiles in C. elegans. Cell. 2009; 139(3):623–33.CrossRefGoogle Scholar
  32. [32]
    Murray JI, Boyle TJ, Preston E, Vafeados D, Mericle B, Weisdepp P, Zhao Z, Bao Z, Boeck M, Waterston RH. Multidimensional regulation of gene expression in the C. elegans embryo. Genome Res. 2012; 22(7):1282–94.CrossRefGoogle Scholar
  33. [33]
    Sarov M, Murray JI, Schanze K, Pozniakovski A, Niu W, Angermann K, Hasse S, Rupprecht M, Vinis E, Tinney M, Preston E, Zinke A, Enst S, Teichgraber T, Janette J, Reis K, Janosch S, Schloissnig S, Ejsmont RK, Slightam C, Xu X, Kim SK, Reinke V, Stewart a F, Snyder M, Waterston RH, Hyman AA. A genome-scale resource for in vivo tag-based protein function exploration in C. elegans. Cell. 2012; 150(4):855–66.CrossRefGoogle Scholar
  34. [34]
    Du Z, Santella A, He F, Tiongson M, Bao Z. De novo inference of systems-level mechanistic models of development from liveimaging-based phenotype analysis. Cell. 2014; 156(1–2):359–72.CrossRefGoogle Scholar
  35. [35]
    Celniker SE, Dillon LAL, Gerstein MB, Gunsalus KC, Henikoff S, Karpen GH, Kellis M, Lai EC, Lieb JD, Macalpine DM, Micklem G, Piano F, Snyder M, Stein L, White KP, Waterston RH. Unlocking the secrets of the genome. Nature. 2009; 459(7249):927–30.CrossRefGoogle Scholar
  36. [36]
    Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, Yip KY, Robilotto R, Rechtsteiner A, Ikegami K, Alves P, Chateigner A, Perry M, Morris M, Auerbach RK, Feng X, Leng J, Vielle A, Niu W, Rhrissorrakrai K, Agarwal A, Alexander RP, Barber G, Brdlik CM, Brennan J, Brouillet JJ, Carr A, Cheung MS, Clawson H, Contrino S, Dannenberg LO, Dernburg AF, Desai A, Dick L, Dosé AC, Du J, Egelhofer T, Ercan S, Euskirchen G, Ewing B, Feingold EA, Gassmann R, Good PJ, Green P, Gullier F, Gutwein M, Guyer MS, Habegger L, Han T, Henikoff JG, Henz SR, Hinrichs A, Holster H, Hyman T, Iniguez AL, Janette J, Jensen M, Kato M, Kent WJ, Kephart E, Khivansara V, Khurana E, Kim JK, Kolasinska-Zwierz P, Lai EC, Latorre I, Leahey A, Lewis S, Lloyd P, Lochovsky L, Lowdon RF, Lubling Y, Lyne R, MacCoss M, Mackowiak SD, Mangone M, McKay S, Mecenas D, Merrihew G, Miller DM 3rd, Muroyama A, Murray JI, Ooi SL, Pham H, Phippen T, Preston EA, Rajewsky N, Rätsch G, Rosenbaum H, Rozowsky J, Rutherford K, Ruzanov P, Sarov M, Sasidharan R, Sboner A, Scheid P, Segal E, Shin H, Shou C, Slack FJ, Slightam C, Smith R, Spencer WC, Stinson EO, Taing S, Takasaki T, Vafeados D, Voronina K, Wang G, Washington NL, Whittle CM, Wu B, Yan KK, Zeller G, Zha Z, Zhong M, Zhou X; modENCODE Consortium, Ahringer J, Strome S, Gunsalus KC, Micklem G, Liu XS, Reinke V, Kim SK, Hillier LW, Henikoff S, Piano F, Snyder M, Stein L, Lieb JD, Waterston RH. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science. 2010; 330(6012):1775–87.CrossRefGoogle Scholar

Copyright information

© Korean Society of Medical and Biological Engineering and Springer 2014

Authors and Affiliations

  1. 1.Laboratory for Developmental DynamicsRIKEN Quantitative Biology CenterKobeJapan
  2. 2.National Bioscience Database CenterJapan Science and Technology AgencyTokyoJapan

Personalised recommendations