Skip to main content
Log in

The potential of naturally occurring lasing for biological and chemical sensors

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Although recent advances in biosensing are promising, there still is a need for label-free, sensitive, and cost-effective detection of single nanoparticles and single biomolecules, without relying in complex fabrications and sophisticated detection strategies. In this review, we show that a better understanding of light-matter interactions can lead to the development of advanced biosensing and bioanalysis systems. In particular, we address alternative biosensing methods of taking advantage of naturally occurring lasers (also known as random lasers). In random lasers, resonances are self-formed due to multiple scattering, leading to light amplification and coherent light generation in the presence of amplifying media. In this case, lasing emission can be unprecedentedly sensitive to subtle nanoscale perturbations. Specifically, we discuss the possibility that random lasers can be an alternative yet superior physical mechanism for biosensors, because the random laser biosensing platform is simple and the detection strategy is straightforward. We further envision that random laser biosensors have the potential to facilitate developing enhanced biological and chemical sensors for single-molecule and single-nanoparticle quantitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sako Y, Minoghchi S, Yanagida T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol. 2000; 2(3):168–72.

    Google Scholar 

  2. Jablonski AE, Humphries WH, Payne CK. Pyrenebutyratemediated delivery of quantum dots across the plasma membrane of living cells. J Phys Chem B. 2009; 113(2):405–8.

    Google Scholar 

  3. Lipman EA, Schuler B, Bakajin O, A. EW. Single-molecule measurement of protein folding kinetics. Science. 2003; 301(5637):1233–5.

    Google Scholar 

  4. Lang MJ, Fordyce PM, Engh AM, Neuman KC, Block SM. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat Methods. 2004; 1(2):133–39.

    Google Scholar 

  5. Lavrinenko AV, Wohlleben W, Leyrer RJ. Influence of imperfections on the photonic insulating and guiding properties of finite Si-inverted opal crystals. Opt Express. 2009; 17(2):747–60.

    Google Scholar 

  6. Choi SH, Kwak B, Han B, Kim YL. Competition between excitation and emission enhancements of quantum dots on disordered plasmonic nanostructures. Opt Express. 2012; 20(15):16785–93.

    Google Scholar 

  7. Huang B, Wu H, Bhaya D, Grossman A, Granier S, Kobilka BK, Zare RN. Counting low-copy number proteins in a single cell. Science. 2007; 315(5808):81–4.

    Google Scholar 

  8. Elf J, Li GW, Xie XS. Probing transcription factor dynamics at the single-molecule level in a living cell. Science. 2007; 316(5828):1191–4.

    Google Scholar 

  9. Moore BD, Stevenson L, Watt A, Flitsch S, Turner NJ, Cassidy C, Graham D. Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nat Biotechnol. 2004; 22(9):1133–8.

    Google Scholar 

  10. Kulkarni RP, Castelino K, Majumdar A, Fraser SE. Intracellular transport dynamics of endosomes containing DNA polyplexes along the microtubule network. Biophys J. 2006; 90(5):L42–4.

    Google Scholar 

  11. Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature. 1995; 374(6522):555–9.

    Google Scholar 

  12. Myong S, Rasnik I, Joo C, Lohman TM, Ha T. Repetitive shuttling of a motor protein on DNA. Nature. 2005; 437(7063):1321–5.

    Google Scholar 

  13. Cao YWC, R. J, A. MC. Nanoparticles with raman spectroscopic fingerprints for dna and rna detection. Science. 2002; 297(5586):1536–40.

    Google Scholar 

  14. Hughes RC, Ricco AJ, Butler MA, Martin SJ. Chemical microsensors. Science. 1991; 254(5028):74–80.

    Google Scholar 

  15. Copper MA. Optical biosensors in drug discovery. Nat Rev Drug Discov. 2002; 1(7):515–28.

    Google Scholar 

  16. Choi SH, Kim YL, Byun KM. Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt Express. 2011; 19(2):458–66.

    Google Scholar 

  17. Choi SH, Byun KM. Investigation on an application of silver substrates for a sensitive surface plasmon resonance imaging detection. J Optl Soc of Am A. 2010; 27(10):2229–36.

    Google Scholar 

  18. Choi SH, Kim SJ, Byun KM. Characteristics of light emission from surface plasmons based on rectangular silver gratings. Opt Commun. 2010; 283(14):2961–6.

    Google Scholar 

  19. Choi SH, Kim SJ, Byun KM. Design study for transmission improvement of resonant surface plasmons using dielectric diffraction gratings. Appl Opt. 2009; 48(15):2924–31.

    Google Scholar 

  20. Piehler J, A. B, G. G. Affinity detection of low molecular weight analyte. Anal Chem. 1996; 68(1):139–43.

    Google Scholar 

  21. Cross GH, Reeves A, Brand S, Swann MJ, Peel LL, Freeman NJ, Lu JR. The metrics of surface adsorbed small molecules on the Young’s fringe dual-slab waveguide interferometer. J Phys D Appl Phys. 2004; 37(1):74–80.

    Google Scholar 

  22. Choi CJ, Block ID, Bole B, Dralle D, Cunningham BT. Labelfree photonic crystal biosensor integrated microfluidic chip for determination of kinetic reaction rate constants. IEEE Sens J. 2009; 9(12):1697–704.

    Google Scholar 

  23. Cunningham BT, Li P, Schulz S, Lin B, Baird C, Gerstenmaier J, Genick C, Wang F, Fine E, Laing L. Label-free assays on the bind system. J Biomol Screen. 2004; 9(6):481–90.

    Google Scholar 

  24. Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 2003; 301(5641):1884–6.

    Google Scholar 

  25. Zhong Z, Wang D, Cui Y, Bockrath MW, Lieber CM. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science. 2003; 302:(5649):1377–9.

    Google Scholar 

  26. Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS, Babcock K, Manalis SR. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature. 2007; 446(7139):1066–9.

    Google Scholar 

  27. Yeo WS, Min DH, Hsieh RW, Greene GL, Mrksich M. Labelfree detection of protein-protein interactions on biochips. Angew Chem Int Edit. 2005; 44(34):5480–3.

    Google Scholar 

  28. Armani AM, Kulkarni RP, Fraser SE, Flagan RC, Vahala KJ. Label-free, single-molecule detection with optical microcavities. Science. 2007; 317(5839):783–7.

    Google Scholar 

  29. Vollmer F, Arnold S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods. 2008; 5(7):591–6.

    Google Scholar 

  30. Harker A, Mehrabani S, Armani AM. Ultraviolet light detection using an optical microcavity. Opt Lett. 2013; 38(17):3422–5.

    Google Scholar 

  31. Zhu J, Ozdemir SK, Xiao YF, Li L, He L, Chen DR, Yang L. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat Photonics. 2010; 4(1):46–9.

    Google Scholar 

  32. Dominguez-Juarez JL, Kozyreff G, Martorell J. Whispering gallery microresonators for second harmonic light generation from a low number of small molecules. Nat Commun. 2011; doi:10.1038/ncomms1253.

    Google Scholar 

  33. Koenderink AF, Lagendijk A, Vos WL. Optical extinction due to intrinsic structural variations of photonic crystals. Phys Rev B. 2005; doi:10.1103/PhysRevB.72.15312.

    Google Scholar 

  34. Toninelli C, Vekris E, Ozin GA, John S, Wiersma DS. Exceptional reduction of the diffusion constant in partially disordered photonic crystals. Phys Rev Lett. 2008; doi:10.1103/PhysRevLett.101.12391.

    Google Scholar 

  35. Woldering LA, Mosk AP, Tjerkstra RW, Vos WL. The influence of fabrication deviations on the photonic band gap of three-dimensional inverse woodpile nanostructures. J Appl Phys. 2009; doi:10.1063/1.310377.

    Google Scholar 

  36. Lavrinenko AV, Wohlleben W, Leyrer RJ. Influence of imperfections on the photonic insulating and guiding properties of finite Si-inverted opal crystals. Opt Express. 2009; 17(2):747–60.

    Google Scholar 

  37. Wiersma DS. Disordered photonics. Nat Photonics 2013; 7(3):188–96.

    Google Scholar 

  38. Cao H. Review on latest developments in random lasers with coherent feedback. J Phys A-Math Gen. 2005; 38(49):10497–535.

    Google Scholar 

  39. Noginov M. Solid-State Random Lasers. 1st ed. Berlin: Springer; 2005.

    Google Scholar 

  40. Wiersma DS. The physics and applications of random lasers. Nat Phys. 2008; 4(5):359–67.

    Google Scholar 

  41. Nishijima Y, Ueno K, Juodkazis S, Mizeikis V, Fujiwara H, Sasaki K, Misawa H. Lasing with well-defined cavity modes in dye-infiltrated silica inverse opals. Opt Express. 2009; 17(4):2976–83.

    Google Scholar 

  42. Wiersma DS, van Albada MP, van Tiggelen BA, Lagendijk A. Experimental evidence for recurrent multiple-scattering events of light in disordered media. Phys Rev Lett. 1995; 74(21):4193–6.

    Google Scholar 

  43. Polson RC, Chipouline A, Vardeny ZV. Random lasing in piconjugated films and infiltrated opals. Adv Mater. 2001; 13(10):760–4.

    Google Scholar 

  44. Kim YL, Turzhitsky VM, Liu Y, Roy HK, Wali RK, Subramanian H, Pradhan P, Backman V. Low-coherence enhanced backscattering: Review of principles and applications for colon cancer screening. J Biomed Opt. 2006; doi:10.1117/1.2236292.

    Google Scholar 

  45. Wang W, Wu N, Tian Y, Wang X, Niezrecki C, Chen J. Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber. Opt Express. 2009; 17(19):16613–8.

    Google Scholar 

  46. Hill GC, Melamud R, Declercq FE, Davenport AA, Chan IH, Hartwell PG, Pruitt BL. SU-8 mems fabry-perot pressure sensor. Sensors Actuat a-Phys. 2007; 138(1):52–62.

    Google Scholar 

  47. Cunningham BT. Label-free optical biosensors: An introduction. New York: Cambridge University Press; 2009.

    Google Scholar 

  48. Kringlebotn J, Archambault J, Reekie L, Payne D. Er3+yb3+ codoped fiber distributed-feedback laser. Opt Lett. 1994; 19(24):2101–3.

    Google Scholar 

  49. Koo KP, Kersey AD. Bragg grating-based laser sensors systems with interferometric interrogation and wavelengthdivision multiplexing. J Lightwave Technol. 1995; 13(7):1243–9.

    Google Scholar 

  50. Mujumdar S, Ricci M, Torre R, Wiersma DS. Amplified extended modes in random lasers. Phys Rev Lett. 2004; doi:10.1103/PhysRevLett.93.053903.

    Google Scholar 

  51. Mujumdar S, Türck V, Torre R, Wiersma DS. Chaotic behavior of a random laser with static disorder. Phys Rev A. 2007; doi:10.1103/PhysRevA.76.033807.

    Google Scholar 

  52. Polson RC, Vardeny ZV. Random lasing in human tissues. Appl Phys Lett. 2004; 85(7):1289–91.

    Google Scholar 

  53. Polson RC, Vardeny ZV. Organic random lasers in the weak-scattering regime. Phys Rev B. 2005; doi:10.1103/PhysRevB.71.045205.

    Google Scholar 

  54. Tulek A, Polson RC, Vardeny ZV. Naturally occurring resonators in random lasing of ·š-conjugated polymer films. Nat Phys. 2010; 6(4):303–10.

    Google Scholar 

  55. Wiersma DS, Cavalieri S. Light emission: a temperaturetunable random laser. Nature. 2001; 414(6865):708–9.

    Google Scholar 

  56. Rose A, Zhu Z, Madigan CF, Swager TM, Buloviæ V. Sensitivity gains in chemosensing by lasing action in organic polymers. Nature. 2005; 434(7035):876–9.

    Google Scholar 

  57. Deng C, He Q, He C, Shi L, Cheng J, Lin T. Conjugated polymer-titania nanoparticle hybrid films: random lasing action and ultrasensitive detection of explosive vapors. J Phys Chem B. 2010; 114(13):4725–30.

    Google Scholar 

  58. Letokhov VS. Generation of light by a scattering medium with negative resonance absorption. Sov J Phys. 1968; 26(4):835–40.

    Google Scholar 

  59. Lawandy NM, Balachandran RM, Gomes ASL, Sauvain E. Laser action in strongly scattering media. Nature. 1994; 368(6470):436–8.

    Google Scholar 

  60. Pradhan P, Kumar N. Localization of light in coherently amplifying random-media. Phys Rev B. 1994; 50(13):9644–7.

    Google Scholar 

  61. Song Q, Xu Z, Choi SH, Sun X, Xiao S, Akkus O, Kim YL. Detection of nanoscale structural changes in bone using random lasers. Biomed Opt Express. 2010; 1(5):1401–7.

    Google Scholar 

  62. Popov O, Zilbershtein A, Davidov D. Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength. Appl Phys Lett. 2006; doi:10.1063/1.2364857.

    Google Scholar 

  63. Dominguez CT, Maltez RL, dos Reis RMS, de Melo LSA, de Araújo CB, Gomes ASL. Dependence of random laser emission on silver nanoparticle density in PMMA films containing rhodamine 6G. J Opt Soc Am B. 2011; 28(5):1118–23.

    Google Scholar 

  64. Cao H, Zhao YG, Ho ST, Seelig EW, Wang QH, Chang RPH. Random laser action in semiconductor powder. Phys Rev Lett. 1999; 82(11):2278–81.

    Google Scholar 

  65. Vanneste C, Sebbah P, Cao H. Lasing with resonant feedback in weakly scattering random systems. Phys Rev Lett, 2007. doi:10.1103/PhysRevLett.98.1439–2.

    Google Scholar 

  66. Muskens OL, Diedenhofen SL, Kaas BC, Algra RE, Bakkers EP, Rivas JG, Lagendijk A. Large photonic strength of highly tunable resonant nanowire materials. Nano Lett. 2009; 9(3):930–4.

    Google Scholar 

  67. Meng X, Fujita K, Murai S, Matoba T, Tanaka K. Plasmonically controlled lasing resonance with metallicdielectric core-shell nanoparticles. Nano Lett. 2011; 11(3):1374–8.

    Google Scholar 

  68. Siddique M, Yang L, Wang QZ, Alfano RR. Mirrorless laser action from optically pumped dye-treated animal-tissues. Opt Commun. 1995; 117(5–6):475–9.

    Google Scholar 

  69. Wang L, Liu D, He N, Jacques SL, Thomsen SL. Biological laser action. Appl Opt. 1996; 35(10):1775–9.

    Google Scholar 

  70. Polson RC, Vardeny ZV. Random lasing in human tissues. Appl Phys Lett. 2004; 85(7):1289–91.

    Google Scholar 

  71. Song Q, Xiao S, Xu Z, Liu J, Sun X, Drachev V, Shalaev VM, Akkus O, Kim YL. Random lasing in bone tissue. Opt Lett. 2010; 35(9):1425–7.

    Google Scholar 

  72. Gather MC, Yun SH. Single-cell biological lasers. Nat Photonics. 2011; 5(7):406–10.

    Google Scholar 

  73. Jiang X, Soukoulis CM. Localized random lasing modes and a path for observing localization. Phys Rev E. 2002; doi:10.1103/PhysRevE.65.025601.

    Google Scholar 

  74. Jiang X, Soukoulis CM. Transmission and reflection studies of periodic and random systems with gain. Phys Rev B. 1999; 59(9):6159–66.

    Google Scholar 

  75. Choi K, Kim H, Lim Y, Kim S, Lee B. Analysis design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a gaussian input beam. Opt Express. 2005; 13(22):8866–74.

    Google Scholar 

  76. Hecht E. Optics. 4th ed. Seoul: Addison Wesley Longman; 2002.

    Google Scholar 

  77. Vanneste C, Sebbah P. Selective excitation of localized modes in active random media. Phys Riv Lett. 2001; doi:10.1103/PhysRevLett.87.183903.

    Google Scholar 

  78. Andreasen J, Asatryan AA, Botten LC, Byrne MA, Cao H, Ge L, Labonté L, Sebbah P, Stone AD, Türeci HE, Vanneste C. Modes of random lasers. Adv Opt Photonics. 2011; 3(1):88–127.

    Google Scholar 

  79. Wu X, Fang W, Yamilov A, Chabanov AA, Asatryan AA, Botten LC, Cao H. Random lasing in weakly scattering systems. Phys Rev A. 2006; doi:10.1103/PhysRevA.74.053812.

    Google Scholar 

  80. Ge L, Tandy RJ, Stone AD, Türeci HE. Quantitative verification of ab initio self-consistent laser theory. Opt Express. 2008; 16(21):16895–902.

    Google Scholar 

  81. Wu XH, Yamilov A, Noh H, Cao H, Seelig EW, Chang RP. Random lasing in closely packed resonant scatterers. J Opt Soc Am B. 2004; 21(1):159–67.

    Google Scholar 

  82. Jin J. The finite element method in electromagnetics. 2nd ed. New York: John Wiley & Sons; 1993.

    MATH  Google Scholar 

  83. Becker EB, Carrey GF, Oden JT. Finite elements: An introduction. NewJersey: Prentice Hall; 1991.

    Google Scholar 

  84. Wu XH, Cao H. Statistics of random lasing modes in weakly scattering systems. Opt Lett. 2007; 32(21):3089–91.

    Google Scholar 

  85. Wu X, Cao H. Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems. Phys Rev A. 2008; doi:10.1103/PhysRevA.77.013832.

    Google Scholar 

  86. Tseng S, Kim Y, Taflove A, Maitland D, Backman V, Walsh J. Simulation of enhanced backscattering of light by numerically solving Maxwell’s equations without heuristic approximations. Opt Express. 2005; 13(10):3666–72.

    Google Scholar 

  87. Fallert J, Dietz RJ, Sartor J, Schneider D, Klingshirn C, Kalt H. Co-existence of strongly and weakly localized random laser modes. Nat Photonics. 2009; 3(5):279–82.

    Google Scholar 

  88. Frolov SV, Vardeny ZV, Yoshino K, Zakhidov A, Baughman RH. Stimulated emission in high-gain organic media. Phys Rev B. 1999; doi:10.1103/PhysRevB.59.R5284.

    Google Scholar 

  89. Van der Molen KL, Tjerkstra RW, Mosk AP, Lagendijk A. Spatial extent of random laser modes. Phys Rev Lett. 2007; doi:10.1103/PhysRevLett.98.143901.

    Google Scholar 

  90. Sebbah P, Vanneste C. Random laser in the localized regime. Phys Rev B. 2002; doi:10.1103/PhysRevB.66.144202.

    Google Scholar 

  91. Song Q, Xiao S, Xu Z, Shalaev VM, Kim YL. Random laser spectroscopy for nanoscale perturbation sensing. Opt Lett. 2010; 35(15):2624–6.

    Google Scholar 

  92. Shahar R, Zaslansky P, Barak M, Friesem AA, Currey JD, Weiner S. Anisotropic poisson's ratio and compression modulus of cortical bone determined by speckle interferometry. J Biomech. 2007; 40(2):252–64.

    Google Scholar 

  93. Choi S, Kim YL. Random lasing mode alterations by singlenanoparticle perturbations. Appl Phys Lett. 2012; doi:10.1063/1.3675885.

    Google Scholar 

  94. Jolliffe IT. Principal Component Analysis. 2nd ed. Springer-Verlag; 19–6.

  95. Yamilov A, Cao H. Highest-quality modes in disordered photonic crystals. Phys Rev A. 2004; doi:10.1103/PhysRevA.69.031803.

    Google Scholar 

  96. Kopp VI, Fan B, Vithana HK, Genack AZ. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt Lett. 1998; 23(21):1707–9.

    Google Scholar 

  97. Milner V, Genack AZ. Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization. Phys Rev Lett. 2005; doi:10.1103/PhysRevLett.94.073901.

    Google Scholar 

  98. Choi SH, Kim YL. Hybridized/coupled multiple resonances in nacre. Phys Rev B. 2014; doi:10.1103/PhysRevB.89.035115.

    Google Scholar 

  99. Dice GD, Mujumdar S, Elezzabi AY. Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser. Appl Phys Lett. 2005; doi:10.1063/1.1894590.

    Google Scholar 

  100. Meng X, Fujita K, Zong Y, Murai S, Tanaka K. Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles. Appl Phys Lett. 2008; doi:10.1063/1.2912527.

    Google Scholar 

  101. Meng X, Fujita K, Murai S, Tanaka K. Coherent random lasers in weakly scattering polymer films containing silver nanoparticles. Phys Rev A. 2009; doi:10.1103/PhysRevA.79.053827.

    Google Scholar 

  102. Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett. 2006; doi:10.1103/PhysRevLett.96.113002.

    Google Scholar 

  103. Bharadwaj P, Novotny L. Spectral dependence of single molecule fluorescence enhancement. Opt Express. 2007; 15(21):14266–74.

    Google Scholar 

  104. Choi SH, Kwak B, Han B, Kim YL. Competition between excitation and emission enhancements of quantum dots on disordered plasmonic nanostructures. Opt Express. 2012; 20(15):16785–93.

    Google Scholar 

  105. Chen Y, Munechika K, Ginger DS. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 2007; 7(3):690–6.

    Google Scholar 

  106. Zhang Y, Dragan A, Geddes CD. Wavelength dependence of metal-enhanced fluorescence. J Phys Chem C. 2009; 113(28):12095–100.

    Google Scholar 

  107. Arnold S, Keng D, Shopova SI, Holler S, Zurawsky W, Vollmer F. Whispering gallery mode carousel — a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt Express. 2009; 17(8):6230–8.

    Google Scholar 

  108. Lin VS, Motesharei K, Dancil KP, Sailor MJ, Ghadiri MR. A porous silicon-based optical interferometric biosensor. Science. 1997; 278(5339):840–3.

    Google Scholar 

  109. Morgan H, Taylor DM. A surface plasmon resonance immunosensor based on the streptavidin-biotin complex. Biosens Bioekctron. 1992; 7(6):405–10.

    Google Scholar 

  110. Abel AP, Weller MG, Duveneck GL, Ehrat M, Widmer HM. Fiber-optic evanescent wave biosensor for the detection of oligonucleotides. Anal Chem. 1996; 68(17):2905–12.

    Google Scholar 

  111. Rehák M, Šnejdárková M, Otto M. Application of biotinstreptavidin technology in developing a xanthine biosensor based on a self-assembled phospholipid membrane. Biosens Bioelectron. 1994; 9(4):337–41.

    Google Scholar 

  112. Kim DS, Park HJ, Park JE, Shin JK, Kang SW, Seo HI, Lim G. Mosfet-type biosensor for detection of streptavidin-biotin protein complexes. Sensors Mater. 2005; 17(5):259–68.

    Google Scholar 

  113. Jung YK, Park HG, Kim JM. Polydiacetylene (PDA)-based colorimetric detection of biotin-streptavidin interactions. Biosens Bioelectron. 2006; 21(8):1536–44.

    Google Scholar 

  114. Tao SL, Popat KC, Norman JJ, Desai TA. Surface modification of SU-8 for enhanced biofunctionality and nonfouling properties. Langmuir. 2008; 24(6):2631–6.

    Google Scholar 

  115. Sadana A, Ram AB. Fractal analysis of antigen-antibody binding kinetics: biosensor applications. Blotechnol Progr. 1994; 10(3):291–8.

    Google Scholar 

  116. Olkhov RV, Shaw AM. Label-free antibody-antigen binding detection by optical sensor array based on surface-synthesized gold nanoparticles. Biosens Bioelectron. 2008; 23(8):1298–302.

    Google Scholar 

  117. Nogues C, Leh H, Langendorf CG, Law RH, Buckle AM, Buckle M. Characterisation of peptide microarrays for studying antibody-antigen binding using surface plasmon resonance imagery. PLoS One. 2010; doi:10.1371/journal.pone.0012152.

    Google Scholar 

  118. Chen Z, Sadana A. An analysis of antigen-antibody binding kinetics for biosensor applications utilized as a model system: influence of non-specific binding. Biophys Chem. 1996; 57(2–3):177–87.

    Google Scholar 

  119. Sutaria M, Sadana A. Dual-fractal analysis for antigenantibody binding kinetics for biosensor applications. Biotechnol Progr. 1997; 13(4):464–73.

    Google Scholar 

  120. Vollmer F, Arnold S, Keng D. Single virus detection from the reactive shift of a whispering-gallery mode. P Natl Acad Sci USA. 2008; 105(52):20701–4.

    Google Scholar 

  121. Polson RC, Vardeny ZV. Spatially mapping random lasing cavities. Opt Lett. 2010; 35(16):2801–3.

    Google Scholar 

  122. Cao H, Ling Y, Xu JY, Burin AL. Probing localized states with spectrally resolved speckle techniques. Phys Rev E. 2002; doi:10.1103/PhysRevE.66.025601.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young L. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S.H., Kim, Y.L. The potential of naturally occurring lasing for biological and chemical sensors. Biomed. Eng. Lett. 4, 201–212 (2014). https://doi.org/10.1007/s13534-014-0155-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-014-0155-x

Keywords

Navigation