Skip to main content

Advertisement

Log in

Acoustic resolution photoacoustic microscopy

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Even if conventional optical imaging systems such as multiphoton microscopy (MPM), confocal microscopy (CM), fluorescence microscopy (FM), and optical coherence tomography (OCT) are regarded as revolutionary microscopic imaging modalities to reveal the inner information of biological tissues with very high spatial resolution, it is inherently restricted to image deep tissues due to strong optical scatting in biological tissues. Photoacoustic imaging (PAI) is a hybrid imaging modality to combine strong optical contrast and high ultrasonic resolution in deep tissues. In a microscopic imaging perspective, photoaocustic microscopy (PAM) can be implemented in two forms: optical-resolution (OR) and acoustic-resolution (AR) PAM. In OR-PAM, the lateral spatial resolution is determined by tight optical focusing, but the penetration depth is limited to one optical transport mean free path. In AR-PAM, the lateral spatial resolution is determined by loose acoustic focusing, but the penetration depth can be much enhanced and reach to several centimeters. Therefore, AR-PAM gains great attention for both preclinical and clinical applications. This review explains the principle, implementation, and applications of AR-PAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang LV, Wu HI. Biomedical optics: principles and imaging. 1st ed. Wiley-Interscience; 2007.

    Google Scholar 

  2. Calasso IG, Craig W, Diebold GJ. Photoacoustic point source. Phys Rev Lett. 2001; 86(16):3550–3.

    Article  Google Scholar 

  3. Grashin PS, Karabutov AA, Oraevsky AA, Pelivanov IM, Podymova NB, Savateeva EVe, Solomatin VS. Distribution of the laser radiation intensity in turbid media: Monte Carlo simulations, theoretical analysis, and results of optoacoustic measurements. Quantum Electron. 2002; doi:10.1070/QE2002v032n10ABEH002308.

    Google Scholar 

  4. Andreev VG, Karabutov AA, Oraevsky AA. Detection of ultrawide-band ultrasound pulses in optoacoustic tomography. IEEE T Ultrason Ferr. 2003; 50(10):1383–90.

    Article  Google Scholar 

  5. Zhang EZ, Laufer JG, Pedley RB, Beard PC. In vivo highresolution 3D photoacoustic imaging of superficial vascular anatomy. Phys Med Biol. 2009; 54(4):1035–46.

    Article  Google Scholar 

  6. Zhang HF, Maslov K, Stoica G, Wang LV. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol. 2006; 24(7):848–51.

    Article  Google Scholar 

  7. Maslov K, Zhang HF, Hu S, Wang LV. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett. 2008; 33(9):929–31.

    Article  Google Scholar 

  8. Chen SL, Burnett J, Sun D, Wei X, Xie Z, Wang X. Photoacoustic microscopy: a potential new tool for evaluation of angiogenesis inhibitor. Biomed Opt Express. 2013; 4(11):2657–66.

    Article  Google Scholar 

  9. Ruan Q, Xi L, Boye SL, Han S, Chen ZJ, Hauswirth WW, Lewin AS, Boulton ME, Law BK, Jiang WG, Jiang H, Cai J. Development of an anti-angiogenic therapeutic model combining scAAV2-delivered siRNAs and noninvasive photoacoustic imaging of tumor vasculature development. Cancer Lett. 2013; 332(1):120–9.

    Article  Google Scholar 

  10. Foo SS, Abbott DF, Lawrentschuk N, Scott AM. Functional imaging of intratumoral hypoxia. Mol Imaging Biol. 2004; 6(5):291–305.

    Article  Google Scholar 

  11. Jo JG, Yang XM. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride. J Biomed Opt. 2011; doi:10.1117/1.3626576.

    Google Scholar 

  12. Yao J, Maslov KI, Zhang Y, Xia Y, Wang LV. Label-free oxygen-metabolic photoacoustic microscopy in vivo. J Biomed Opt. 2011; doi:10.1117/1.3594786.

    Google Scholar 

  13. Brunker J, Beard P. Pulsed photoacoustic Doppler flowmetry using time-domain cross-correlation: accuracy, resolution and scalability. J Acoust Soc Am. 2012; 132(3):1780–91.

    Article  Google Scholar 

  14. Shah J, Park S, Aglyamov S, Larson T, Ma L, Sokolov K, Johnston K, Milner T, Emelianov SY. Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J Biomed Opt. 2008; doi:10.1117/1.2940362.

    Google Scholar 

  15. Pramanik M, Wang LV. Thermoacoustic and photoacoustic sensing of temperature. J Biomed Opt. 2009; doi:10.1117/1.3247155.

    Google Scholar 

  16. Liu T, Wei Q, Wang J, Jiao S, Zhang HF. Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen. Biomed Opt Express. 2011; 2(5):1359–65.

    Article  Google Scholar 

  17. Yao J, Xia J, Maslov KI, Nasiriavanaki M, Tsytsarev V, Demchenko AV, Wang LV. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. Neuroimage. 2013; 64:257–66.

    Article  Google Scholar 

  18. Pu K, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS, Bao Z, Rao J. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol. 2014; 9(3):233–9.

    Article  Google Scholar 

  19. Huynh E, Lovell JF, Helfield BL, Jeon M, Kim C, Goertz DE, Wilson BC, Zheng G. Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J Am Chem Soc. 2012; 134(40):16464–7.

    Article  Google Scholar 

  20. Kim G, Huang SW, Day KC, O’Donnell M, Agayan RR, Day MA, Kopelman R, Ashkenazi S. Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging. J Biomed Opt. 2007; doi:10.1117/1.2771530.

    Google Scholar 

  21. Li K, Liu B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev. 2014; 43(18):6570–97.

    Article  Google Scholar 

  22. Cho EC, Kim C, Zhou F, Cobley CM, Song KH, Chen J, Li ZY, Wang LV, Xia Y. Measuring the optical absorption cross sections of Au Ag nanocages and Au nanorods by photoacoustic imaging. J Phys Chem C Nanomater Interfaces. 2009; 113(21): 9023–8.

    Article  Google Scholar 

  23. Zhang Y, Jeon M, Rich LJ, Hong H, Geng J, Zhang Y, Shi S, Barnhart TE, Alexandridis P, Huizinga JD, Seshadri M, Cai W, Kim C, Lovell JF. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol. 2014; 9(8):631–8.

    Article  Google Scholar 

  24. Li PC, Wei CW, Liao CK, Chen CD, Pao KC, Wang CR, Wu YN, Shieh DB. Photoacoustic imaging of multiple targets using gold nanorods. IEEE T Ultrason Ferr. 2007; 54(8):1642–7.

    Article  Google Scholar 

  25. Pramanik M, Swierczewska M, Wang LV, Green D, Sitharaman B. Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J Biomed Opt. 2009; doi:10.1117/1.3147407.

    Google Scholar 

  26. Pan D, Pramanik M, Senpan A, Yang X, Song KH, Scott MJ, Zhang H, Gaffney PJ, Wickline SA, Wang LV, Lanza GM. Molecular photoacoustic tomography with colloidal nanobeacons. Angewandte Chemie International Edition. 2009; 48(23):4170–3.

    Article  Google Scholar 

  27. Jeon M, Song W, Huynh E, Kim J, Kim J, Helfield BL, Leung BY, Goertz DE, Zheng G, Oh J. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging. J Biomed Opt. 2014; 19(1):16005. doi:10.1117/1.JBO.19.1.016005.

    Article  Google Scholar 

  28. Ohulchanskyy TY, Kopwitthaya A, Jeon M, Guo M, Law W-C, Furlani EP, Kim C, Prasad PN. Phospholipid micelle-based magneto-plasmonic nanoformulation for magnetic field-directed, imaging-guided photo-induced cancer therapy. Nanomedicine: Nanotechnol Biol Med. 2013; 9(8):1192–202.

    Article  Google Scholar 

  29. Kim C, Favazza C, Wang LV. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev. 2010; 110(5):2756–82.

    Article  Google Scholar 

  30. Wang LV. Tutorial on photoacoustic microscopy and computed tomography. IEEE J Sel Top Quant. 2008; 14(1):171–9.

    Article  Google Scholar 

  31. Yao J, Wang L. Multi-scale multi-contrast photoacoustic microscopy. Frontiers Opt. 2013; doi:10.1364/FIO.2013.FM4A.1.

    Google Scholar 

  32. Jeon M, Kim J, Kim C. Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo. Med Biol Eng Comput. 2014; doi:10.1007/s11517-014-1182-6.

    Google Scholar 

  33. Maslov K, Stoica G, Wang LV. In vivo dark-field reflectionmode photoacoustic microscopy. Opt Lett. 2005; 30(6):625–7.

    Article  Google Scholar 

  34. Hu S, Maslov K, Wang LV. Second-generation opticalresolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett. 2011; 36(7):1134–6.

    Article  Google Scholar 

  35. Han S, Lee C, Kim S, Jeon M, Kim J, Kim C. In vivo virtual intraoperative surgical photoacoustic microscopy. Appl Phys Lett. 2013; 103(20):2037–2.

    Article  Google Scholar 

  36. Cai X, Paratala BS, Hu S, Sitharaman B, Wang LV. Multiscale photoacoustic microscopy of single-walled carbon nanotubeincorporated tissue engineering scaffolds. Tissue Eng Part CMethods. 2012; 18(4):310–7.

    Article  Google Scholar 

  37. Xing WX, Wang LD, Maslov K, Wang LV. Integrated opticaland acoustic-resolution photoacoustic microscopy based on an optical fiber bundle. Opt Lett. 2013; 38(1):52–4.

    Article  Google Scholar 

  38. Purushotham AD, Upponi S, Klevesath MB, Bobrow L, Millar K, Myles JP, Duffy SW. Morbidity after sentinel lymph node biopsy in primary breast cancer: results from a randomized controlled trial. J Clin Oncol. 2005; 23(19):4312–21.

    Article  Google Scholar 

  39. Krishnamurthy S, Sneige N, Bedi DG, Edieken BS, Fornage BD, Kuerer HM, Singletary SE, Hunt KK. Role of ultrasoundguided fine-needle aspiration of indeterminate and suspicious axillary lymph nodes in the initial staging of breast carcinoma. Cancer. 2002; 95(5):982–8.

    Article  Google Scholar 

  40. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exper Med. 2007; 204(10):2349–62.

    Article  Google Scholar 

  41. Li L, Liu C, Ren H, Wang QH. Adaptive liquid iris based on electrowetting. Opt Lett. 2013; 38(13):2336–8.

    Article  Google Scholar 

  42. Song L, Kim C, Maslov K, Shung KK, Wang LV. High-speed dynamic 3D photoacoustic imaging of sentinel lymph node in a murine model using an ultrasound array. Med Phys. 2009; 36(8):3724–9.

    Article  Google Scholar 

  43. Kim C, Song KH, Gao F, Wang LV. Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats-volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging. Radiology. 2010; 255(2):442–50.

    Article  Google Scholar 

  44. Liu X, Lee C, Law WC, Zhu DW, Liu MX, Jeon M, Kim J, Prasad PN, Kim C, Swihart MT. Au-Cu2-xSe heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. Nano Lett. 2013; 13(9):4333–9.

    Article  Google Scholar 

  45. Luther JM, Jain PK, Ewers T, Alivisatos AP. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat Mater. 2011; 10(5):361–6.

    Article  Google Scholar 

  46. Dorfs D, Hartling T, Miszta K, Bigall NC, Kim MR, Genovese A, Falqui A, Povia M, Manna L. Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals. J Am Chem Soc. 2011; 133(29):11175–80.

    Article  Google Scholar 

  47. Zhao Y, Pan H, Lou Y, Qiu X, Zhu J, Burda C. Plasmonic Cu2 x S nanocrystals: optical and structural properties of copper-deficient copper (I) Sulfides. J Am Chem Soc. 2009; 131(12):4253–61.

    Article  Google Scholar 

  48. Liu X, Law WC, Jeon M, Wang X, Liu M, Kim C, Prasad PN, Swihart MT. Cu2-xSe nanocrystals with localized surface plasmon resonance as sensitive contrast agents for in vivo photoacoustic imaging: demonstration of sentinel lymph node mapping. Adv Healthc Mater. 2013; 2(7):952–7.

    Article  Google Scholar 

  49. Koo J, Jeon M, Oh Y, Kang HW, Kim J, Kim C, Oh J. In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes. Phys Med Biol. 2012; 57(23):7853–62.

    Article  Google Scholar 

  50. De La Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma TJ, Oralkan O, Cheng Z, Chen X, Dai H, Khuri-Yakub BT, Gambhir SS. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol. 2008; 3(9):557–62.

    Article  Google Scholar 

  51. Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009; 2(2):85–120.

    Article  Google Scholar 

  52. Pramanik M, Song KH, Swierczewska M, Green D, Sitharaman B, Wang LV. In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node. Phys Med Biol. 2009; 54(11):3291–301.

    Article  Google Scholar 

  53. O’connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE. Band gap fluorescence from individual single-walled carbon nanotubes. Science. 2002; 297(5581):593–6.

    Article  Google Scholar 

  54. Scardapane A, Pagliarulo V, Ianora AA, Pagliarulo A, Angelelli G. Contrast-enhanced multislice pneumo-CT-cystography in the evaluation of urinary bladder neoplasms. Eur J Radiol. 2008; 66(2):246–52.

    Article  Google Scholar 

  55. Rothwell RI, Ash DV, Jones WG. Radiation treatment planning for bladder cancer: a comparison of cystogram localisation with computed tomography. Clin Radiol. 1983; 34(1):103–11.

    Article  Google Scholar 

  56. Browne RF, Murphy SM, Grainger R, Hamilton S. CT cystography and virtual cystoscopy in the assessment of new and recurrent bladder neoplasms. Eur J Radiol. 2005; 53(1):147–53.

    Article  Google Scholar 

  57. Lim R. Vesicoureteral reflux and urinary tract infection: evolving practices and current controversies in pediatric imaging. Am J Roentgenol. 2009; 192(5):1197–208.

    Article  Google Scholar 

  58. Brown MC, Sutherst JR, Murray A, Richmond DH. Potential use of ultrasound in place of X-ray fluoroscopy in urodynamics. Br J Urol. 1985; 57(1):88–90.

    Article  Google Scholar 

  59. Vining DJ, Zagoria RJ, Liu K, Stelts D. CT cystoscopy: an innovation in bladder imaging. Am J Roentgenol. 1996; 166(2):409–10.

    Article  Google Scholar 

  60. Kim C, Jeon M, Wang LV. Nonionizing photoacoustic cystography in vivo. Opt Lett. 2011; 36(18):3599–601.

    Article  Google Scholar 

  61. Kim C, Cho EC, Chen J, Song KH, Au L, Favazza C, Zhang Q, Cobley CM, Gao F, Xia Y, Wang LV. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano. 2010; 4(8):4559–64.

    Article  Google Scholar 

  62. Jeon M, Jenkins S, Oh J, Kim J, Peterson T, Chen J, Kim C. Nonionizing photoacoustic cystography with near-infrared absorbing gold nanostructures as optical-opaque tracers. Nanomedicine. 2013; 9(9):1377–88.

    Article  Google Scholar 

  63. Srivatsan A, Jenkins SV, Jeon M, Wu Z, Kim C, Chen J, Pandey RK. Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Theranostics. 2014; 4(2):163–74.

    Article  Google Scholar 

  64. Soffer E. Small bowel motility: Ready for prime time?. Curr Gastroenterol Rep. 2000; 2(5):364–9.

    Article  Google Scholar 

  65. Ohama T, Hori M, Ozaki H. Mechanism of abnormal intestinal motility in inflammatory bowel disease: how smooth muscle contraction is reduced?. J Smooth Muscle Res. 2007; 43(2):43–54.

    Article  Google Scholar 

  66. Lembo A, Camilleri M. Chronic constipation. New England J Med. 2003; 349(14):1360–8.

    Article  Google Scholar 

  67. Abrahamsson H. Gastrointestinal motility disorders in patients with diabetes mellitus. J Intern Med. 1995; 237(4):403–9.

    Article  Google Scholar 

  68. Shafer RB, Prentiss RA, Bond JH. Gastrointestinal transit in thyroid disease. Gastroenterology. 1984; 86(5 Pt 1):852–5.

    Google Scholar 

  69. Jost WH. Gastrointestinal motility problems in patients with Parkinson’s disease. Drugs Aging. 1997; 10(4):249–58.

    Article  Google Scholar 

  70. Dye CE, Gaffney RR, Dykes TM, Moyer MT. Endoscopic and radiographic evaluation of the small bowel in 2012. Am J Med. 2012; doi: 10.1016/j.amjmed.2012.06.017.

    Google Scholar 

  71. Zhang Y, Jeon M, Rich LJ, Hong H, Geng J, Zhang Y, Shi S, Barnhart TE, Alexandridis P, Huizinga JD, Seshadri M, Cai W, Kim C, Lovell JF. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol. 2014; 9(8):631–8.

    Article  Google Scholar 

  72. Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC. In vivo small animal imaging: current status and future prospects. Med Phys. 2010; 37(12):6421–42.

    Article  Google Scholar 

  73. Foster FS, Hossack J, Adamson SL. Micro-ultrasound for preclinical imaging. Interface Focus. 2011; 1(4):576–601.

    Article  Google Scholar 

  74. Ritman EL. Current status of developments and applications of micro-CT. Annu Rev Biomed Eng. 2011; 13:531–52.

    Article  Google Scholar 

  75. Goetz C, Breton E, Choquet P, Israel-Jost V, Constantinesco A. SPECT low-field MRI system for small-animal imaging. J Nucl Med. 2008; 49(1):88–93.

    Article  Google Scholar 

  76. Judenhofer MS, Cherry SR. Applications for preclinical PET/ MRI. Seminars Nucl Med. 2013; 43(1):19–29.

    Article  Google Scholar 

  77. Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010; 7(8):603–14.

    Article  Google Scholar 

  78. Biosphera Home Page. http://www.biosphera.com.br. Accessed 2-Oct-2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chulhong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Lee, C., Kim, J. et al. Acoustic resolution photoacoustic microscopy. Biomed. Eng. Lett. 4, 213–222 (2014). https://doi.org/10.1007/s13534-014-0153-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-014-0153-z

Keywords

Navigation