Skip to main content

Advertisement

Log in

Next-generation flexible neural and cardiac electrode arrays

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

The electrical activities of the brain and heart have been recorded and analyzed for diverse clinical and pathological purposes. To construct an implantable system for monitoring the electrical activity effectively, flexible and stretchable electrode arrays that are capable of making conformal contacts on the curvilinear, soft, and dynamic surfaces of the target organs have been extensively researched. Among many strategies, the most representative approach is to fabricate electrode arrays on plastic substrates to achieve more intimate and conformal contact with the target organs. Further optimizations are along with the development of ultrathin and stretchable electronics. Advanced structural modifications, such as thinning the overall profile or applying a mesh-like electrode network, have shown the greatly enhanced conformability and deformability of the device, providing improved signal-to-noise ratios (SNRs). Furthermore, brittle but high-performance silicon transistors have been successfully incorporated in flexible forms by virtue of mechanics-based active electronics designs, enabling the construction of high-density arrays comprising hundreds of multiplexed electrodes that can be individually addressed by only a few external wires. This review summarizes these strategies and describes their strengths and weaknesses, and it suggests possible technologies for nextgeneration electrode arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. Jasper HH, Arfel-Capdeville G, Rasmussen T. Evaluation of EEG and cortical electrographic studies for prognosis of seizures following surgical excision of epileptogenic lesions. Epilepsia. 1961; 2(2):130–7.

    Google Scholar 

  2. Crone NE. Functional mapping with ECoG spectral analysis. Adv Neurol. 2000; 84:343–51.

    Google Scholar 

  3. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006; 313(5793):1626–8.

    Article  Google Scholar 

  4. McGonigal A, Bartolomei F, Régis J, Guye M, Gavaret M, Fonseca AT-D, Dufour H, Figarella-Branger D, Girard N, Péragut J-C, Chauvel P. Stereoelectroencephalography in presurgical assessment of MRI-negative epilepsy. Brain. 2007; 130(12):3169–83.

    Article  Google Scholar 

  5. Waldert S, Pistohl T, Braun C, Ball T, Aertsen A, Mehring C. A review on directional information in neural signals for brainmachine interfaces. J Physiol Paris. 2009; 103(3–5):244–54.

    Article  Google Scholar 

  6. Kato R, Lickfett L, Meininger G, Dickfeld T, Wu R, Juang G, Angkeow P, LaCorte J, Bluemke D, Berger R, Halperin HR, Calkins H. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation. 2003; 107(15):2004–10.

    Article  Google Scholar 

  7. Aziz JNY, Abdelhalim K, Shulyzki R, Genov R, Bardakjian BL, Derchansky M, Serletis D, Carlen PL. 256-channel neural recording and delta compression microsystem with 3D electrodes. IEEE J Solid-St Circ. 2009; 44(3):995–1005.

    Article  Google Scholar 

  8. Dewire J, Calkins H. State-of-the-art and emerging technologies for atrial fibrillation ablation. Nat Rev Cardiol. 2010; 7(3):129–38.

    Article  Google Scholar 

  9. Viventi J, Kim D-H, Vigeland L, Frechette ES, Blanco JA, Kim YS, Avrin AE, Tiruvadi VR, Hwang S-W, Vanleer AC, Wulsin DF, Davis K, Gelber CE, Palmer L, Van der Spiegel J, Wu J, Xiao J, Huang YG, Contreras D, Rogers JA, Litt B. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci. 2011; 14(12):1599–605.

    Article  Google Scholar 

  10. Viventi J, Kim D-H, Moss JD, Kim Y-S, Blanco JA, Annetta N, Hicks A, Xiao J, Huang Y, Callans DJ, Rogers JA, Litt B. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med. 2010; 2(24):24ra22.

    Article  Google Scholar 

  11. Normann RA. Technology Insight: future neuroprosthetic therapies for disorders of the nervous system. Nat Clin Pract Neurol. 2007; 3(8):444–52.

    Article  Google Scholar 

  12. Byun D, Cho SJ, Kim S. Fabrication of a flexible penetrating microelectrode array for use on curved surfaces of neural tissues. J Micromech Microeng. 2013; 23(12):1250–0.

    Google Scholar 

  13. Moran D. Evolution of brain-computer interface: Action potentials, local field potentials and electrocorticograms. Curr Opin Neurobiol. 2010; 20(6):741–5.

    Article  Google Scholar 

  14. Gefen A, Margulies SS. Are in vivo and in situ brain tissues mechanically similar? J Biomech. 2004; 37(9):1339–52.

    Article  Google Scholar 

  15. Santhanam G, Linderman MD, Gilja V, Afshar A, Ryu SI, Meng TH, Shenoy KV. HermesB: A Continuous Neural Recording System for Freely Behaving Primates. IEEE T Biomed Eng. 2007; 54(11):2037–50.

    Article  Google Scholar 

  16. Branner A, Stein RB, Fernandez E, Aoyagi Y, Normann RA. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve. IEEE T Biomed Eng. 2004; 51(1):146–57.

    Article  Google Scholar 

  17. Vince V, Thil M-A, Gérard A-C, Veraart C, Delbeke J, Colin IM. Cuff electrode implantation around the sciatic nerve is associated with an upregulation of TNF-α and TGF-β1. J Neuroimmunol. 2005; 159(1–2):75–86.

    Article  Google Scholar 

  18. Stieglitz T, Beutel H, Meyer J-U. A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves. Sensor Actuat A-Phys. 1997; 60(1–3):240–3.

    Article  Google Scholar 

  19. Takeuchi S, Suzuki T, Mabuchi K, Fujita H. 3D flexible multichannel neural probe array. J Micromech Microeng. 2004; 14(1):104–7.

    Article  Google Scholar 

  20. Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Toepper M, Oppermann H, Solzbacher F. Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices. 2009; 11(2):453–66.

    Article  Google Scholar 

  21. Ryu SI, Shenoy KV. Human cortical prostheses: lost in translation? Neurosurg Focus. 2009; 27(1):E5.

    Article  Google Scholar 

  22. Sugano H, Shimizu H, Sunaga S. Efficacy of intraoperative electrocorticography for assessing seizure outcomes in intractable epilepsy patients with temporal-lobe-mass lesions. Seizure. 2007; 16(2):120–7.

    Article  Google Scholar 

  23. Miller KJ, denNijs M, Shenoy P, Miller JW, Rao RPN, Ojemann JG. Real-time functional brain mapping using electrocorticography. NeuroImage. 2007; 37(2):504–7.

    Article  Google Scholar 

  24. Blakely T, Miller KJ, Zanos SP, Rao RPN, Ojemann JG. Robust, long-term control of an electrocorticographic brain-computer interface with fixed parameters. Neurosurg Focus. 2009; 27(1):E13.

    Article  Google Scholar 

  25. Leuthardt EC, Gaona C, Sharma M, Szrama N, Ronald J, Freudenberg Z, Solis J, Breshears J, Schalk G. Using the electrocorticographic speech network to control a braincomputer interface in humans. J Neural Eng. 2011; 8(3):0360–4.

    Article  Google Scholar 

  26. Graimann B, Huggins JE, Schlogl A, Levine SP, Pfurtscheller G. Detection of movement-related patterns in ongoing singlechannel electrocorticogram. IEEE T Neural Syst Rehabil Eng. 2003; 11(3):276–81.

    Article  Google Scholar 

  27. Leuthardt EC, Miller KJ, Schalk G, Rao RPN, Ojemann JG. Electrocorticography-based brain computer Interface-the seattle experience. IEEE T Neural Syst Rehabil Eng. 2006; 14(2):194–8.

    Article  Google Scholar 

  28. Miller KJ, Schalk G, Fetz EE, den Nijs M, Ojemann JG, Rao RPN. Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc Natl Acad Sci USA. 2010; 107(9):4430–5.

    Article  Google Scholar 

  29. Abel TJ, Rhone AE, Nourski KV, Granner MA, Oya H, Griffiths TD, Tranel DT, Kawasaki H, Howard MA. Mapping the temporal pole with a specialized electrode array: technique and preliminary results. Physiol Meas. 2014; 35(3):323–37.

    Article  Google Scholar 

  30. Chen C, Shin D, Watanabe H, Nakanishi Y, Kambara H, Yoshimura N, Nambu A, Isa T, Nishimura Y, Koike Y. Prediction of hand trajectory from electrocorticography signals in primary motor cortex. Plos One. 2013; 8(12):e83534.

    Article  Google Scholar 

  31. Rubehn B, Fries P, Stieglitz T. MEMS-Technology for largescale, multichannel ECoG-electrode array manufacturing. Conf Proc IFMBE. 2008; 22:2413–6.

    Article  Google Scholar 

  32. Tokuda T, Pan YL, Uehara A, Kagawa K, Nunoshita M, Ohta J. Flexible and extendible neural interface device based on cooperative multi-chip CMOS LSI architecture. Sensor Actuat A-Phys. 2005; 122(1):88–98.

    Article  Google Scholar 

  33. Tokuda T, Takeuchi Y, Noda T, Sasagawa K, Nishida K, Kitaguchi Y, Fujikado T, Tano Y, Ohta J, editors. Lightcontrolled retinal stimulation on rabbit using CMOS-based flexible multi-chip stimulator. Conf Proc IEEE Eng Med Biol Soc. 2009; 2009:646–9.

  34. Ohta J, Tokuda T, Kagawa K, Sugitani S, Taniyama M, Uehara A, Terasawa Y, Nakauchi K, Fujikado T, Tano Y. Laboratory investigation of microelectronics-based stimulators for largescale suprachoroidal transretinal stimulation (STS). J Neural Eng. 2007; 4(1):S85–91.

    Article  Google Scholar 

  35. Tokuda T, Takeuchi Y, Sagawa Y, Noda T, Sasagawa K, Nishida K, Fujikado T, Ohta J. Development and in vivo Demonstration of CMOS-based multichip retinal stimulator with simultaneous multisite stimulation capability. IEEE T Biomed Circuits Sys. 2010; 4(6):445–53.

    Article  Google Scholar 

  36. Ohta J, Tokuda T, Sasagawa K, Noda T. Implantable CMOS biomedical devices. Sensors-Basel. 2009; 9(11):9073–93.

    Article  Google Scholar 

  37. Ohta J, Tokuda T, Kagawa K, Furumiya T, Uehara A, Terasawa Y, Ozawa M, Fujikado T, Tano Y. Silicon LSI-based smart stimulators for retinal prosthesis — a flexible and extendable microchip-based stimulator. IEEE Eng Med Biol Mag. 2006; 25(5):47–59.

    Article  Google Scholar 

  38. Borton D, Bonizzato M, Beauparlant J, DiGiovanna J, Moraud EM, Wenger N, Musienko P, Minev IR, Lacour SP, Millán JdR, Micera S, Courtine G. Corticospinal neuroprostheses to restore locomotion after spinal cord injury. Neurosci Res. 2014; 78:21–9.

    Article  Google Scholar 

  39. Yeager JD, Phillips DJ, Rector DM, Bahr DF. Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. J Neurosci Methods. 2008; 173(2):279–85.

    Article  Google Scholar 

  40. Liang G, Guvanasen GS, Xi L, Tuthill C, Nichols TR, DeWeerth SP. APDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing. IEEE T Biomed Circuits Sys. 2013; 7(1):1–10.

    Article  Google Scholar 

  41. Yanai D, Weiland JD, Mahadevappa M, Greenberg RJ, Fine I, Humayun MS. Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am J Ophthalmol. 2007;143(5):820–7.

    Article  Google Scholar 

  42. Rodger DC, Fong AJ, Li W, Ameri H, Ahuja AK, Gutierrez C, Lavrov I, Zhong H, Menon PR, Meng E, Burdick JW, Roy RR, Edgerton VR, Weiland JD, Humayun MS, Tai Y-C. Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sensor Actuat B-Chem. 2008; 132(2):449–60.

    Article  Google Scholar 

  43. Stieglitz T, Beutel H, Schuettler M, Meyer J-U. Micromachined, Polyimide-based devices for flexible neural interfaces. Biomed Microdevices. 2000; 2(4):283–94.

    Article  Google Scholar 

  44. Sauter-Starace F, Bibari O, Berger F, Caillat P, Benabid AL. ECoG recordings of a non-human primate using carbon nanotubes electrodes on a flexible polyimide implant. Conf Proc IEEE Eng Med Biol Soc. 2009; 2009:112–5.

    Google Scholar 

  45. Matsuo T, Kawasaki K, Osada T, Sawahata H, Suzuki T, Shibata M, Miyakawa N, Nakahara K, Iijima A, Sato N, Kawai K, Saito N, Hasegawa I. Intrasulcal electrocorticography in macaque monkeys with minimally invasive neurosurgical protocols. Front Syst Neurosci. 2011; 5–34.

    Google Scholar 

  46. Rubehn B, Bosman C, Oostenveld R, Fries P, Stieglitz T. A MEMS-based flexible multichannel ECoG-electrode array. J Neural Eng. 2009; 6(3):0360–3.

    Article  Google Scholar 

  47. Hollenberg BA, Richards CD, Richards R, Bahr DF, Rector DM. AMEMS fabricated flexible electrode array for recording surface field potentials. J Neurosci Methods. 2006; 153(1):147–53.

    Article  Google Scholar 

  48. Kim D-H, Viventi J, Amsden JJ, Xiao J, Vigeland L, Kim Y-S, Blanco JA, Panilaitis B, Frechette ES, Contreras D, Kaplan DL, Omenetto FG, Huang Y, Hwang K-C, Zakin MR, Litt B, Rogers JA. Dissolvable films of silk fibroin for ultrathin conformal biointegrated electronics. Nat Mater. 2010; 9(6):511–7.

    Article  Google Scholar 

  49. Toda H, Suzuki T, Sawahata H, Majima K, Kamitani Y, Hasegawa I. Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex. Neuroimage. 2011; 54(1):203–12.

    Article  Google Scholar 

  50. Dhein S, Muller A, Klaus W. Prearrhythmia: changes preceding arrhythmia, new aspects by epicardial mapping. Basic Res Cardiol. 1990; 85(3):285–96.

    Article  Google Scholar 

  51. Gepstein L, Hayam G, Ben-Haim SA. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation. 1997; 95(6):1611–22.

    Article  Google Scholar 

  52. Faris OP, Evans FJ, Ennis DB, Helm PA, Taylor JL, Chesnick AS, Guttman MA, Ozturk C, McVeigh ER. Novel technique for cardiac electromechanical mapping with magnetic resonance imaging tagging and an epicardial electrode sock. Ann Biomed Eng. 2003; 31(4):430–40.

    Article  Google Scholar 

  53. Harrison L, Ideker RE, Smith WM, Klein GJ, Kasell J, Wallace AG, Gallagher JJ. The sock electrode array: a tool for determining global epicardial activation during unstable arrhythmias. Pacing Clin Electrophysiol. 1980; 3(5):531–40.

    Article  Google Scholar 

  54. Sutherland DR, Ni Q, MacLeod RS, Lux RL, Punske BB. Experimental measures of ventricular activation and synchrony. Pacing Clin Electrophysiol. 2008; 31(12):1560–70.

    Article  Google Scholar 

  55. Hindricks G, Kottkamp H. Simultaneous noncontact mapping of left atrium in patients with paroxysmal atrial fibrillation. Circulation. 2001; 104(3):297–303.

    Article  Google Scholar 

  56. Ouyang F, Ernst S, Chun J, Bansch D, Li Y, Schaumann A, Mavrakis H, Liu X, Deger FT, Schmidt B, Xue Y, Cao J, Hennig D, Huang H, Kuck KH, Antz M. Electrophysiological findings during ablation of persistent atrial fibrillation with electroanatomic mapping and double Lasso catheter technique. Circulation. 2005; 112(20):3038–48.

    Article  Google Scholar 

  57. Kim D-H, Ghaffari R, Lu N, Wang S, Lee SP, Keum H, D’Angelo R, Klinker L, Su Y, Lu C, Kim Y-S, Ameen A, Li Y, Zhang Y, de Graff B, Hsu YY, Liu Z, Ruskin J, Xu L, Lu C, Omenetto FG, Huang Y, Mansour M, Slepian MJ, Rogers JA. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc Natl Acad Sci USA. 2012; 109(49):19910–5.

    Article  Google Scholar 

  58. Xu L, Gutbrod SR, Bonifas AP, Su Y, Sulkin MS, Lu N, Chung HJ, Jang KI, Liu Z, Ying M, Lu C, Webb RC, Kim JS, Laughner JI, Cheng H, Liu Y, Ameen A, Jeong JW, Kim GT, Huang Y, Efimov IR, Rogers JA. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat Commun. 2014; 5–3329.

    Google Scholar 

  59. Olsson RH, Gulari MN, Wise KD. Silicon neural recording arrays with on-chip electronics for in-vivo data acquisition. Conf Proc IEEE-EMB Spec Top Conf Microtech Med Biol. 2002; 237–40.

    Google Scholar 

  60. Khodagholy D, Doublet T, Quilichini P, Gurfinkel M, Leleux P, Ghestem A, Ismailova E, Herve T, Sanaur S, Bernard C, Malliaras GG. In vivo recordings of brain activity using organic transistors. Nat Commun. 2013; 4–1575.

    Google Scholar 

  61. Han S-J, Jenkins KA, Valdes Garcia A, Franklin AD, Bol AA, Haensch W. High-frequency graphene voltage amplifier. Nano Lett. 2011; 11(9):3690–3.

    Article  Google Scholar 

  62. Andersson MA, Habibpour O, Vukusic J, Stake J. 10 dB smallsignal graphene FET amplifier. Electron Lett. 2012; 48(14):861–3.

    Article  Google Scholar 

  63. Yang X, Liu G, Balandin AA, Mohanram K. Triple-mode single-transistor graphene amplifier and its applications. ACS Nano. 2010; 4(10):5532–8.

    Article  Google Scholar 

  64. Klauk H, Zschieschang U, Halik M. Low-voltage organic thinfilm transistors with large transconductance. J Appl Phys. 2007; 102(7):0745–4.

    Article  Google Scholar 

  65. Hutzler M, Fromherz P. Silicon chip with capacitors and transistors for interfacing organotypic brain slice of rat hippocampus. Eur J Neurosci. 2004; 19(8):2231–8.

    Article  Google Scholar 

  66. Kim D-H, Ahn J-H, Choi WM, Kim H-S, Kim T-H, Song J, Huang YY, Liu Z, Lu C, Rogers JA. Stretchable and foldable silicon integrated circuits. Science. 2008; 320(5875):507–11.

    Article  Google Scholar 

  67. Friedman PA. Novel mapping techniques for cardiac electrophysiology. Heart. 2002; 87(6):575–82.

    Article  Google Scholar 

  68. Aliot EM, Stevenson WG, Almendral-Garrote JM, Bogun F, Calkins CH, Delacretaz E, Bella PD, Hindricks G, Jaïs P, Josephson ME, Kautzner J, Kay GN, Kuck K-H, Lerman BB, Marchlinski F, Reddy V, Schalij M-J, Schilling R, Soejima K, Wilber D. EHRA/HRS expert consensus on catheter ablation of ventricular arrhythmias: developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA). Europace. 2009; 11(6):771–817.

    Article  Google Scholar 

  69. Scherlag BJ, Lau SH, Helfant RH, Berkowitz WD, Stein E, Damato AN. Catheter technique for recording his bundle activity in man. Circulation. 1969; 39(1):13–8.

    Article  Google Scholar 

  70. Laufs H, Daunizeau J, Carmichael DW, Kleinschmidt A. Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging. Neuroimage. 2008; 40(2):515–28.

    Article  Google Scholar 

  71. Gotman J, Kobayashi E, Bagshaw AP, Benar CG, Dubeau F. Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging. 2006; 23(6):906–20.

    Article  Google Scholar 

  72. Bhavaraju NC, Nagaraddi V, Chetlapalli SR, Osorio I. Electrical and thermal behavior of non-ferrous noble metal electrodes exposed to MRI fields. Magn Reson Imaging. 2002; 20(4):351–7.

    Article  Google Scholar 

  73. Davis LM, Spencer DD, Spencer SS, Bronen RA. MR imaging of implanted depth and subdural electrodes: is it safe? Epilepsy Res. 1999; 35(2):95–8.

    Article  Google Scholar 

  74. Jupp B, Williams JP, Tesiram YA, Vosmansky M, O’Brien TJ. MRI compatible electrodes for the induction of amygdala kindling in rats. J Neurosci Methods. 2006; 155(1):72–6.

    Article  Google Scholar 

  75. Bonmassar G, Fujimoto K, Golby AJ. PTFOS: Flexible and Absorbable Intracranial Electrodes for Magnetic Resonance Imaging. Plos One. 2012; 7(9):e411–7.

    Article  Google Scholar 

  76. Hwang S-W, Tao H, Kim D-H, Cheng H, Song J-K, Rill E, Brenckle MA, Panilaitis B, Won SM, Kim Y-S, Song Y-M, Yu K-J, Ameen A, Li R, Su Y, Yang M, Kaplan DL, Zakin MR, Slepian MJ, Huang Y, Omenetto FG, Rogers JA. A physically transient form of silicon electronics. Science. 2012; 337(6102): 1640–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Hyeong Kim.

Additional information

J. Kim and M. Lee contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Lee, M., Rhim, J.S. et al. Next-generation flexible neural and cardiac electrode arrays. Biomed. Eng. Lett. 4, 95–108 (2014). https://doi.org/10.1007/s13534-014-0132-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-014-0132-4

Keywords

Navigation