Abstract
The electrical activities of the brain and heart have been recorded and analyzed for diverse clinical and pathological purposes. To construct an implantable system for monitoring the electrical activity effectively, flexible and stretchable electrode arrays that are capable of making conformal contacts on the curvilinear, soft, and dynamic surfaces of the target organs have been extensively researched. Among many strategies, the most representative approach is to fabricate electrode arrays on plastic substrates to achieve more intimate and conformal contact with the target organs. Further optimizations are along with the development of ultrathin and stretchable electronics. Advanced structural modifications, such as thinning the overall profile or applying a mesh-like electrode network, have shown the greatly enhanced conformability and deformability of the device, providing improved signal-to-noise ratios (SNRs). Furthermore, brittle but high-performance silicon transistors have been successfully incorporated in flexible forms by virtue of mechanics-based active electronics designs, enabling the construction of high-density arrays comprising hundreds of multiplexed electrodes that can be individually addressed by only a few external wires. This review summarizes these strategies and describes their strengths and weaknesses, and it suggests possible technologies for nextgeneration electrode arrays.
Similar content being viewed by others
Refrerences
Jasper HH, Arfel-Capdeville G, Rasmussen T. Evaluation of EEG and cortical electrographic studies for prognosis of seizures following surgical excision of epileptogenic lesions. Epilepsia. 1961; 2(2):130–7.
Crone NE. Functional mapping with ECoG spectral analysis. Adv Neurol. 2000; 84:343–51.
Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006; 313(5793):1626–8.
McGonigal A, Bartolomei F, Régis J, Guye M, Gavaret M, Fonseca AT-D, Dufour H, Figarella-Branger D, Girard N, Péragut J-C, Chauvel P. Stereoelectroencephalography in presurgical assessment of MRI-negative epilepsy. Brain. 2007; 130(12):3169–83.
Waldert S, Pistohl T, Braun C, Ball T, Aertsen A, Mehring C. A review on directional information in neural signals for brainmachine interfaces. J Physiol Paris. 2009; 103(3–5):244–54.
Kato R, Lickfett L, Meininger G, Dickfeld T, Wu R, Juang G, Angkeow P, LaCorte J, Bluemke D, Berger R, Halperin HR, Calkins H. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation. 2003; 107(15):2004–10.
Aziz JNY, Abdelhalim K, Shulyzki R, Genov R, Bardakjian BL, Derchansky M, Serletis D, Carlen PL. 256-channel neural recording and delta compression microsystem with 3D electrodes. IEEE J Solid-St Circ. 2009; 44(3):995–1005.
Dewire J, Calkins H. State-of-the-art and emerging technologies for atrial fibrillation ablation. Nat Rev Cardiol. 2010; 7(3):129–38.
Viventi J, Kim D-H, Vigeland L, Frechette ES, Blanco JA, Kim YS, Avrin AE, Tiruvadi VR, Hwang S-W, Vanleer AC, Wulsin DF, Davis K, Gelber CE, Palmer L, Van der Spiegel J, Wu J, Xiao J, Huang YG, Contreras D, Rogers JA, Litt B. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci. 2011; 14(12):1599–605.
Viventi J, Kim D-H, Moss JD, Kim Y-S, Blanco JA, Annetta N, Hicks A, Xiao J, Huang Y, Callans DJ, Rogers JA, Litt B. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med. 2010; 2(24):24ra22.
Normann RA. Technology Insight: future neuroprosthetic therapies for disorders of the nervous system. Nat Clin Pract Neurol. 2007; 3(8):444–52.
Byun D, Cho SJ, Kim S. Fabrication of a flexible penetrating microelectrode array for use on curved surfaces of neural tissues. J Micromech Microeng. 2013; 23(12):1250–0.
Moran D. Evolution of brain-computer interface: Action potentials, local field potentials and electrocorticograms. Curr Opin Neurobiol. 2010; 20(6):741–5.
Gefen A, Margulies SS. Are in vivo and in situ brain tissues mechanically similar? J Biomech. 2004; 37(9):1339–52.
Santhanam G, Linderman MD, Gilja V, Afshar A, Ryu SI, Meng TH, Shenoy KV. HermesB: A Continuous Neural Recording System for Freely Behaving Primates. IEEE T Biomed Eng. 2007; 54(11):2037–50.
Branner A, Stein RB, Fernandez E, Aoyagi Y, Normann RA. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve. IEEE T Biomed Eng. 2004; 51(1):146–57.
Vince V, Thil M-A, Gérard A-C, Veraart C, Delbeke J, Colin IM. Cuff electrode implantation around the sciatic nerve is associated with an upregulation of TNF-α and TGF-β1. J Neuroimmunol. 2005; 159(1–2):75–86.
Stieglitz T, Beutel H, Meyer J-U. A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves. Sensor Actuat A-Phys. 1997; 60(1–3):240–3.
Takeuchi S, Suzuki T, Mabuchi K, Fujita H. 3D flexible multichannel neural probe array. J Micromech Microeng. 2004; 14(1):104–7.
Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Toepper M, Oppermann H, Solzbacher F. Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices. 2009; 11(2):453–66.
Ryu SI, Shenoy KV. Human cortical prostheses: lost in translation? Neurosurg Focus. 2009; 27(1):E5.
Sugano H, Shimizu H, Sunaga S. Efficacy of intraoperative electrocorticography for assessing seizure outcomes in intractable epilepsy patients with temporal-lobe-mass lesions. Seizure. 2007; 16(2):120–7.
Miller KJ, denNijs M, Shenoy P, Miller JW, Rao RPN, Ojemann JG. Real-time functional brain mapping using electrocorticography. NeuroImage. 2007; 37(2):504–7.
Blakely T, Miller KJ, Zanos SP, Rao RPN, Ojemann JG. Robust, long-term control of an electrocorticographic brain-computer interface with fixed parameters. Neurosurg Focus. 2009; 27(1):E13.
Leuthardt EC, Gaona C, Sharma M, Szrama N, Ronald J, Freudenberg Z, Solis J, Breshears J, Schalk G. Using the electrocorticographic speech network to control a braincomputer interface in humans. J Neural Eng. 2011; 8(3):0360–4.
Graimann B, Huggins JE, Schlogl A, Levine SP, Pfurtscheller G. Detection of movement-related patterns in ongoing singlechannel electrocorticogram. IEEE T Neural Syst Rehabil Eng. 2003; 11(3):276–81.
Leuthardt EC, Miller KJ, Schalk G, Rao RPN, Ojemann JG. Electrocorticography-based brain computer Interface-the seattle experience. IEEE T Neural Syst Rehabil Eng. 2006; 14(2):194–8.
Miller KJ, Schalk G, Fetz EE, den Nijs M, Ojemann JG, Rao RPN. Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc Natl Acad Sci USA. 2010; 107(9):4430–5.
Abel TJ, Rhone AE, Nourski KV, Granner MA, Oya H, Griffiths TD, Tranel DT, Kawasaki H, Howard MA. Mapping the temporal pole with a specialized electrode array: technique and preliminary results. Physiol Meas. 2014; 35(3):323–37.
Chen C, Shin D, Watanabe H, Nakanishi Y, Kambara H, Yoshimura N, Nambu A, Isa T, Nishimura Y, Koike Y. Prediction of hand trajectory from electrocorticography signals in primary motor cortex. Plos One. 2013; 8(12):e83534.
Rubehn B, Fries P, Stieglitz T. MEMS-Technology for largescale, multichannel ECoG-electrode array manufacturing. Conf Proc IFMBE. 2008; 22:2413–6.
Tokuda T, Pan YL, Uehara A, Kagawa K, Nunoshita M, Ohta J. Flexible and extendible neural interface device based on cooperative multi-chip CMOS LSI architecture. Sensor Actuat A-Phys. 2005; 122(1):88–98.
Tokuda T, Takeuchi Y, Noda T, Sasagawa K, Nishida K, Kitaguchi Y, Fujikado T, Tano Y, Ohta J, editors. Lightcontrolled retinal stimulation on rabbit using CMOS-based flexible multi-chip stimulator. Conf Proc IEEE Eng Med Biol Soc. 2009; 2009:646–9.
Ohta J, Tokuda T, Kagawa K, Sugitani S, Taniyama M, Uehara A, Terasawa Y, Nakauchi K, Fujikado T, Tano Y. Laboratory investigation of microelectronics-based stimulators for largescale suprachoroidal transretinal stimulation (STS). J Neural Eng. 2007; 4(1):S85–91.
Tokuda T, Takeuchi Y, Sagawa Y, Noda T, Sasagawa K, Nishida K, Fujikado T, Ohta J. Development and in vivo Demonstration of CMOS-based multichip retinal stimulator with simultaneous multisite stimulation capability. IEEE T Biomed Circuits Sys. 2010; 4(6):445–53.
Ohta J, Tokuda T, Sasagawa K, Noda T. Implantable CMOS biomedical devices. Sensors-Basel. 2009; 9(11):9073–93.
Ohta J, Tokuda T, Kagawa K, Furumiya T, Uehara A, Terasawa Y, Ozawa M, Fujikado T, Tano Y. Silicon LSI-based smart stimulators for retinal prosthesis — a flexible and extendable microchip-based stimulator. IEEE Eng Med Biol Mag. 2006; 25(5):47–59.
Borton D, Bonizzato M, Beauparlant J, DiGiovanna J, Moraud EM, Wenger N, Musienko P, Minev IR, Lacour SP, Millán JdR, Micera S, Courtine G. Corticospinal neuroprostheses to restore locomotion after spinal cord injury. Neurosci Res. 2014; 78:21–9.
Yeager JD, Phillips DJ, Rector DM, Bahr DF. Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. J Neurosci Methods. 2008; 173(2):279–85.
Liang G, Guvanasen GS, Xi L, Tuthill C, Nichols TR, DeWeerth SP. APDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing. IEEE T Biomed Circuits Sys. 2013; 7(1):1–10.
Yanai D, Weiland JD, Mahadevappa M, Greenberg RJ, Fine I, Humayun MS. Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am J Ophthalmol. 2007;143(5):820–7.
Rodger DC, Fong AJ, Li W, Ameri H, Ahuja AK, Gutierrez C, Lavrov I, Zhong H, Menon PR, Meng E, Burdick JW, Roy RR, Edgerton VR, Weiland JD, Humayun MS, Tai Y-C. Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sensor Actuat B-Chem. 2008; 132(2):449–60.
Stieglitz T, Beutel H, Schuettler M, Meyer J-U. Micromachined, Polyimide-based devices for flexible neural interfaces. Biomed Microdevices. 2000; 2(4):283–94.
Sauter-Starace F, Bibari O, Berger F, Caillat P, Benabid AL. ECoG recordings of a non-human primate using carbon nanotubes electrodes on a flexible polyimide implant. Conf Proc IEEE Eng Med Biol Soc. 2009; 2009:112–5.
Matsuo T, Kawasaki K, Osada T, Sawahata H, Suzuki T, Shibata M, Miyakawa N, Nakahara K, Iijima A, Sato N, Kawai K, Saito N, Hasegawa I. Intrasulcal electrocorticography in macaque monkeys with minimally invasive neurosurgical protocols. Front Syst Neurosci. 2011; 5–34.
Rubehn B, Bosman C, Oostenveld R, Fries P, Stieglitz T. A MEMS-based flexible multichannel ECoG-electrode array. J Neural Eng. 2009; 6(3):0360–3.
Hollenberg BA, Richards CD, Richards R, Bahr DF, Rector DM. AMEMS fabricated flexible electrode array for recording surface field potentials. J Neurosci Methods. 2006; 153(1):147–53.
Kim D-H, Viventi J, Amsden JJ, Xiao J, Vigeland L, Kim Y-S, Blanco JA, Panilaitis B, Frechette ES, Contreras D, Kaplan DL, Omenetto FG, Huang Y, Hwang K-C, Zakin MR, Litt B, Rogers JA. Dissolvable films of silk fibroin for ultrathin conformal biointegrated electronics. Nat Mater. 2010; 9(6):511–7.
Toda H, Suzuki T, Sawahata H, Majima K, Kamitani Y, Hasegawa I. Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex. Neuroimage. 2011; 54(1):203–12.
Dhein S, Muller A, Klaus W. Prearrhythmia: changes preceding arrhythmia, new aspects by epicardial mapping. Basic Res Cardiol. 1990; 85(3):285–96.
Gepstein L, Hayam G, Ben-Haim SA. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation. 1997; 95(6):1611–22.
Faris OP, Evans FJ, Ennis DB, Helm PA, Taylor JL, Chesnick AS, Guttman MA, Ozturk C, McVeigh ER. Novel technique for cardiac electromechanical mapping with magnetic resonance imaging tagging and an epicardial electrode sock. Ann Biomed Eng. 2003; 31(4):430–40.
Harrison L, Ideker RE, Smith WM, Klein GJ, Kasell J, Wallace AG, Gallagher JJ. The sock electrode array: a tool for determining global epicardial activation during unstable arrhythmias. Pacing Clin Electrophysiol. 1980; 3(5):531–40.
Sutherland DR, Ni Q, MacLeod RS, Lux RL, Punske BB. Experimental measures of ventricular activation and synchrony. Pacing Clin Electrophysiol. 2008; 31(12):1560–70.
Hindricks G, Kottkamp H. Simultaneous noncontact mapping of left atrium in patients with paroxysmal atrial fibrillation. Circulation. 2001; 104(3):297–303.
Ouyang F, Ernst S, Chun J, Bansch D, Li Y, Schaumann A, Mavrakis H, Liu X, Deger FT, Schmidt B, Xue Y, Cao J, Hennig D, Huang H, Kuck KH, Antz M. Electrophysiological findings during ablation of persistent atrial fibrillation with electroanatomic mapping and double Lasso catheter technique. Circulation. 2005; 112(20):3038–48.
Kim D-H, Ghaffari R, Lu N, Wang S, Lee SP, Keum H, D’Angelo R, Klinker L, Su Y, Lu C, Kim Y-S, Ameen A, Li Y, Zhang Y, de Graff B, Hsu YY, Liu Z, Ruskin J, Xu L, Lu C, Omenetto FG, Huang Y, Mansour M, Slepian MJ, Rogers JA. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc Natl Acad Sci USA. 2012; 109(49):19910–5.
Xu L, Gutbrod SR, Bonifas AP, Su Y, Sulkin MS, Lu N, Chung HJ, Jang KI, Liu Z, Ying M, Lu C, Webb RC, Kim JS, Laughner JI, Cheng H, Liu Y, Ameen A, Jeong JW, Kim GT, Huang Y, Efimov IR, Rogers JA. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat Commun. 2014; 5–3329.
Olsson RH, Gulari MN, Wise KD. Silicon neural recording arrays with on-chip electronics for in-vivo data acquisition. Conf Proc IEEE-EMB Spec Top Conf Microtech Med Biol. 2002; 237–40.
Khodagholy D, Doublet T, Quilichini P, Gurfinkel M, Leleux P, Ghestem A, Ismailova E, Herve T, Sanaur S, Bernard C, Malliaras GG. In vivo recordings of brain activity using organic transistors. Nat Commun. 2013; 4–1575.
Han S-J, Jenkins KA, Valdes Garcia A, Franklin AD, Bol AA, Haensch W. High-frequency graphene voltage amplifier. Nano Lett. 2011; 11(9):3690–3.
Andersson MA, Habibpour O, Vukusic J, Stake J. 10 dB smallsignal graphene FET amplifier. Electron Lett. 2012; 48(14):861–3.
Yang X, Liu G, Balandin AA, Mohanram K. Triple-mode single-transistor graphene amplifier and its applications. ACS Nano. 2010; 4(10):5532–8.
Klauk H, Zschieschang U, Halik M. Low-voltage organic thinfilm transistors with large transconductance. J Appl Phys. 2007; 102(7):0745–4.
Hutzler M, Fromherz P. Silicon chip with capacitors and transistors for interfacing organotypic brain slice of rat hippocampus. Eur J Neurosci. 2004; 19(8):2231–8.
Kim D-H, Ahn J-H, Choi WM, Kim H-S, Kim T-H, Song J, Huang YY, Liu Z, Lu C, Rogers JA. Stretchable and foldable silicon integrated circuits. Science. 2008; 320(5875):507–11.
Friedman PA. Novel mapping techniques for cardiac electrophysiology. Heart. 2002; 87(6):575–82.
Aliot EM, Stevenson WG, Almendral-Garrote JM, Bogun F, Calkins CH, Delacretaz E, Bella PD, Hindricks G, Jaïs P, Josephson ME, Kautzner J, Kay GN, Kuck K-H, Lerman BB, Marchlinski F, Reddy V, Schalij M-J, Schilling R, Soejima K, Wilber D. EHRA/HRS expert consensus on catheter ablation of ventricular arrhythmias: developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA). Europace. 2009; 11(6):771–817.
Scherlag BJ, Lau SH, Helfant RH, Berkowitz WD, Stein E, Damato AN. Catheter technique for recording his bundle activity in man. Circulation. 1969; 39(1):13–8.
Laufs H, Daunizeau J, Carmichael DW, Kleinschmidt A. Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging. Neuroimage. 2008; 40(2):515–28.
Gotman J, Kobayashi E, Bagshaw AP, Benar CG, Dubeau F. Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging. 2006; 23(6):906–20.
Bhavaraju NC, Nagaraddi V, Chetlapalli SR, Osorio I. Electrical and thermal behavior of non-ferrous noble metal electrodes exposed to MRI fields. Magn Reson Imaging. 2002; 20(4):351–7.
Davis LM, Spencer DD, Spencer SS, Bronen RA. MR imaging of implanted depth and subdural electrodes: is it safe? Epilepsy Res. 1999; 35(2):95–8.
Jupp B, Williams JP, Tesiram YA, Vosmansky M, O’Brien TJ. MRI compatible electrodes for the induction of amygdala kindling in rats. J Neurosci Methods. 2006; 155(1):72–6.
Bonmassar G, Fujimoto K, Golby AJ. PTFOS: Flexible and Absorbable Intracranial Electrodes for Magnetic Resonance Imaging. Plos One. 2012; 7(9):e411–7.
Hwang S-W, Tao H, Kim D-H, Cheng H, Song J-K, Rill E, Brenckle MA, Panilaitis B, Won SM, Kim Y-S, Song Y-M, Yu K-J, Ameen A, Li R, Su Y, Yang M, Kaplan DL, Zakin MR, Slepian MJ, Huang Y, Omenetto FG, Rogers JA. A physically transient form of silicon electronics. Science. 2012; 337(6102): 1640–4.
Author information
Authors and Affiliations
Corresponding author
Additional information
J. Kim and M. Lee contributed equally.
Rights and permissions
About this article
Cite this article
Kim, J., Lee, M., Rhim, J.S. et al. Next-generation flexible neural and cardiac electrode arrays. Biomed. Eng. Lett. 4, 95–108 (2014). https://doi.org/10.1007/s13534-014-0132-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13534-014-0132-4