Biomedical Engineering Letters

, Volume 3, Issue 4, pp 209–222 | Cite as

Current nano/biotechnological approaches in amyotrophic lateral sclerosis

Review Article

Abstract

Amyotrophic lateral sclerosis (ALS) is a common late-onset neurodegenerative disorder that affects motor neurons. There is no conclusive etiology of ALS, though approximately 2% of cases have been linked with mutant Cu, Zn-superoxide dismutase (SOD1). A plethora of mechanisms that contribute to ALS disease progression have been discovered in the last two decades, including nonneuronal cell signaling, activation of the apoptotic cascade, and excitotoxicity. Though conclusive diagnosis of ALS remains elusive and though there is still no known effective treatment for this disease, continuously exploring the pathology would provide insight into the creation of novel technologies for the treatment and diagnosis of ALS. In this review, we provide an overview of hypothesized mechanisms and possible biomarkers for ALS pathology, in the first section. In the following section, we introduce recent nano/biotechnological approaches in studying disease mechanism and developing diagno-therapeutic methods for ALS.

Keywords

Amyotrophic lateral sclerosis Cu Zn-superoxide dismutase Diagno-therapeutics Nanobiotechnology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci. 2004; 27:723–749.CrossRefGoogle Scholar
  2. [2]
    Tu PH, Raju P, Robinson KA, Gurney ME, Trojanowski JQ, Lee VM. Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci U S A. 1996; 93:3155–3160.CrossRefGoogle Scholar
  3. [3]
    Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, Rothstein JD, Borchelt DR, Price DL, Cleveland DW. ALS-Linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron. 1997; 18:327–338.CrossRefGoogle Scholar
  4. [4]
    Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol. 2009; 65:S3–S9.CrossRefGoogle Scholar
  5. [5]
    Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron. 1995; 14:1105–1116.CrossRefGoogle Scholar
  6. [6]
    Shaw CE, Enayat ZE, Powell JF, Anderson VER, Radunovic A, Al-Sarraj S, Leigh PN. Familial amyotrophic lateral sclerosis: Molecular pathology of a patient with a SOD1 mutation. Neurology. 1997; 49:1612–1616.CrossRefGoogle Scholar
  7. [7]
    Cleveland DW and Rothstein JD. From Charcot to Lou Gehrig: Deciphering Selective motor neuron death in ALS. Nat Rev Neurosci. 2001; 2:806–819.CrossRefGoogle Scholar
  8. [8]
    Furukawa Y. Pathological roles of wild-type Cu, Zn-superoxide dismutase in amyotrophic lateral sclerosis. Neurol Res Int. 2012; 2012.Google Scholar
  9. [9]
    Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993; 362:59–62.CrossRefGoogle Scholar
  10. [10]
    Yim MB, Kang JH, Yim HS, Kwak HS, Chock PB, Stadtman ER. A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc Natl Acad Sci U S A. 1996; 93:5709–5714.CrossRefGoogle Scholar
  11. [11]
    Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, Getzoff ED, Hu P, Herzfeldt B, Roos RP et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science. 1993; 261:1047–1051.CrossRefGoogle Scholar
  12. [12]
    Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, Chen W, Zhai P, Sufit RL, Siddique T. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase. Science. 1994; 264:1772–1775.CrossRefGoogle Scholar
  13. [13]
    Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 1995; 92:689–693.CrossRefGoogle Scholar
  14. [14]
    Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science. 1998; 281:1851–1854.CrossRefGoogle Scholar
  15. [15]
    Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science. 2003; 302:113–117.CrossRefGoogle Scholar
  16. [16]
    Deng HX, Shi Y, Furukawa Y, Zhai H, Fu R, Liu E, Gorrie GH, Khan MS, Hung W, Bigio EH et al. Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in Mitochondria. Proc Natl Acad Sci U S A. 2006; 103(18):7142–7147.CrossRefGoogle Scholar
  17. [17]
    Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DR, Wilcox HM, Flood DG, Beal MF, Brown RH, Jr. et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet. 1996; 13:43–47.CrossRefGoogle Scholar
  18. [18]
    Pokrishevsky E, Grad LI, Yousefi M, Wang J, Mackenzie IR, Cashman NR. Aberrant localization of FUS and TDP43 is associated with misfolding of SOD1 in amyotrophic lateral sclerosis. PLoS ONE. 2012; 7(4):e35050.CrossRefGoogle Scholar
  19. [19]
    Guareschi S, Cova E, Cereda C, Ceroni M, Donetti E, Bosco DA, Trotti D, Pasinelli P. An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1. Proc Natl Acad Sci U S A. 2012; 109(13):5074–5079.CrossRefGoogle Scholar
  20. [20]
    van Blitterswijk M, Gulati S, Smoot E, Jaffa M, Maher N, Hyman BT, Ivinson AJ, Scherzer CR, Schoenfeld DA, Cudkowicz ME et al. Anti-superoxide dismutase antibodies are associated with survival in patients with sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2011; 12(6):430–438.CrossRefGoogle Scholar
  21. [21]
    Gruzman A, Wood WL, Alpert E, Prasad MD, Miller RG, Rothstein JD, Bowser K, Hamilton R, Wood TD, Cleveland DW et al. Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2007; 104(30):12524–12529.CrossRefGoogle Scholar
  22. [22]
    Liu H, Sanelli T, Horne P, Pioro EP, Strong MJ, Rogaeva E, Bilbao J, Zinman C, Robertson J. Lack of evidence of monomer/misfolded superoxide dismutase-1 in sporadic amyotrophic lateral sclerosis. Ann Neurol. 2009; 66:75–80.CrossRefGoogle Scholar
  23. [23]
    Johnson FO and Atchison W. The role of environmental mercury, lead, and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicology. 2009; 30(5):761–765.CrossRefGoogle Scholar
  24. [24]
    Kostic V, Jackson-Lewis V, de Bilbao F, Dubois-Dauphin M, Przedborski S. Bcl-2: Prolonging life in transgenic mouse model of familial amyotrophic lateral sclerosis. Science. 1997; 277:559–563.CrossRefGoogle Scholar
  25. [25]
    Julien JP. ALS: astrocytes move in as deadly neighbors. Nat Neurosci. 2007; 10:535–537.CrossRefGoogle Scholar
  26. [26]
    Nagai M, Re DB, Nagata T, Chalazonitis A, Jessecc TM, Wichterle H, Przedborski S. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci. 2007; 10(5):615–622.CrossRefGoogle Scholar
  27. [27]
    Cadet JL, Sheng P, All S, Rothman R, Carlson E, Epstein C. Rapid communication: attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice. J Neurochem. 1994; 62:380–383.CrossRefGoogle Scholar
  28. [28]
    Chan PH, Kawase M, Murakami K, Chen SF, Li Y, Calagui B, Reola L, Carlson E, Epstein CJ. Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J Neurosci. 1998; 18(20):8292–8299.Google Scholar
  29. [29]
    Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet. 1998; 19:171–174.CrossRefGoogle Scholar
  30. [30]
    Brettschneider J, Toledo JB, Van Deerlin VM, Elman L, McCluskey L, Lee VM, Trojanowski JQ. Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS ONE. 2012; 7(6):e39216.CrossRefGoogle Scholar
  31. [31]
    Di Georgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K. Non-cell-autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci. 2007; 10(5):608–614.CrossRefGoogle Scholar
  32. [32]
    Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W. The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta. 2006; 1762:1068–1082.CrossRefGoogle Scholar
  33. [33]
    Rothstein JD, Martin LJ, Kuncl RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med. 1992; 326(22):1464–1468.CrossRefGoogle Scholar
  34. [34]
    Rothstein JD, Dykes-Hoberg H, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996; 16:675–686.CrossRefGoogle Scholar
  35. [35]
    Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, Erickson J, Kulik J, DeVito L, Psaltis G. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A. 2002; 99(3):1604–1609.CrossRefGoogle Scholar
  36. [36]
    Trotti D, Rolfs A, Dangbolt NC, Brown RH, Jr., Hediger MA. SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat. Neurosci. 1999; 2(5):427–433.CrossRefGoogle Scholar
  37. [37]
    Guo H, Lai L, Butchbach MER, Stockinger MP, Shan X, Bishop GA, Lin CL. Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum Mol Genet. 2003; 12(19):2519–2532.CrossRefGoogle Scholar
  38. [38]
    Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Hoberg MD, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005; 433:73–77.CrossRefGoogle Scholar
  39. [39]
    Kong J and Xu Z, Massive Mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci. 1998; 18(9):3241–3250.Google Scholar
  40. [40]
    Jaarsma D, Haasdijk ED, Grashorn JAC, Hawkins R, van Duijn W, Verspaget HW, London J, Holstege JC. Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol Dis. 2000; 7:623–643.CrossRefGoogle Scholar
  41. [41]
    Pasinelli P, Houseweart MK, Brown RH Jr., Cleveland DW. Caspase-1 and -3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismutase mediated familial amyotrophic lateral sclerosis. P Natl Acad Sci USA. 2000; 97(25):13901–13906.CrossRefGoogle Scholar
  42. [42]
    Guegan C, Vila M, Rosoklija G, Hays AP, Przedborski S. Recruitment of the mitochondrial apoptotic pathway in amyotrophic lateral sclerosis. J Neurosci. 2001; 21(17):6569–6576.Google Scholar
  43. [43]
    Lambrechts D, Storkebaum E, Morimoto M, Del-Favero J, Desmet F, Marklund SL, Wyns S, Thijs V, Andersson J, van Marion I, Al-Chalabi A, Bornes S, Musson R, Hansen V, Beckman L, Adolfsson R, Pall HS, Prats H, Vermeire S, Rutgeerts P, Katayama S, Awata T, Leigh N, Lang-Lazdunski L, Dewerchin M, Shaw C, Moons L, Vlietinck R, Morrison KE, Robberecht W, Van Broeckhoven C, Collen D, Andersen PM, Carmeliet P. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet. 2003; 34(4):383–394.CrossRefGoogle Scholar
  44. [44]
    Zheng C, Skold MK, Li J, Nennesmo I, Fadeel B, Henter J. VEGF reduces astrogliosis and preserves neuromuscular junctions in ALS transgenic mice. Biochem Biophys Res Commun. 2007; 363(4):989–993.CrossRefGoogle Scholar
  45. [45]
    Gao X, Xu Z. Mechanisms of action of angiogenin. Acta Biochim Biophys Sin. 2008, 40(7):619–624.CrossRefMathSciNetGoogle Scholar
  46. [46]
    Borasio GD, Robberecht W, Leigh PN, Emile J, Guiloff RJ, Jerusalem F, Silani V, Vos PE, Wokke JHJ, Dobbins T. A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. Neurology. 1998; 51(2):583–586.CrossRefGoogle Scholar
  47. [47]
    Dobrowolny G, Aucello M, Rizzuto E, Beccafico S, Mammucari C, Boncompagni S, Belia S, Wannenes F, Nicoletti C, Del Prete Z, Rosenthal N, Molinaro M, Protasi F, Fano G, Sandri M, Musaro A. Skeletal muscle is a primary target of SOD1G93A-mediated toxicity. Cell Metab. 2008; 8(5):425–436.CrossRefGoogle Scholar
  48. [48]
    Wilson ME, Boumaza I, Lacomis D, Bowser R. Cystatin C: A candidate biomarker for amyotrophic lateral sclerosis. PLoS ONE. 2010; doi: 10.1371/journal.pone.0015133.Google Scholar
  49. [49]
    Pasinetti GM, Ungar LH, Lange DJ, Yemul S, Deng H, Yuan X, Brown RH, Cudkowicz ME, Newhall K, Peskind E, Marcus S, Ho L. Identification of potential CSF biomarkers in ALS. Neurology. 2006; 66(8):1218–1222.CrossRefGoogle Scholar
  50. [50]
    Mitchell RM, Freeman WM, Randazzo WT, Stephens HE, Beard JL, Simmons Z, Connor JR. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology. 2009; 72(1):14–19.CrossRefGoogle Scholar
  51. [51]
    Mitsumoto H, Del Bene M. Improving the quality of life for people with ALS: The challenge ahead. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000; 1(5):329–335.CrossRefGoogle Scholar
  52. [52]
    Bensimon G, Lacomblez L, Meininger V, ALS/Riluzole study group. A controlled trial of Riluzole in amyotrophic lateral sclerosis. N Engl J Med. 1994; 330(9):585–591.CrossRefGoogle Scholar
  53. [53]
    Zhu S, Stavrovskava IG, Drozda M, Kim BYS, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu DC, Gullans S, Ferrante RJ, Przedborski S, Kristal BS, Friedlander RM. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature. 2002; 417(6884):74–78.CrossRefGoogle Scholar
  54. [54]
    Teng PN, Bateman NW, Hood BL, Conrads TP. Advances in proximal fluid proteomics for disease biomarker discovery. J Proteome Res. 2010; 9(12):6091–6100.CrossRefGoogle Scholar
  55. [55]
    Madian AG, Regnier FE. Profiling carbonylated proteins in human plasma. J Proteome Res. 2010; 9(3):1330–1343.CrossRefGoogle Scholar
  56. [56]
    Kabanov AV, Gendelman HE. Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polym Sci. 2007; 32(8–9):1054–1082.CrossRefGoogle Scholar
  57. [57]
    Haes AJ, Chang L, Klein WL, Van Duyne RP. Detection of a Biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc. 2005; 127(7):2264–2271.CrossRefGoogle Scholar
  58. [58]
    Singh S, Singh M, Gambhir IS. Nanotechnology for Alzheimer’s disease detection. Dig J Nanomater Bios. 2008; 3(2):75–79.Google Scholar
  59. [59]
    Uversky VN, Kabanov AV, Lyubchenko YL. Nanotools for megaproblems: Probing protein misfolding diseases using nanomedicine modus operandi. J Proteome Res. 2006; 5(10):2505–2522.CrossRefGoogle Scholar
  60. [60]
    Kogan MJ, Bastus NG, Amigo R, Grillo-Bosch D, Araya E, Turiel A, Labarta A, Giralt E, Puntes VF. Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett. 2006; 6(1):110–115.CrossRefGoogle Scholar
  61. [61]
    Kransnoslobodtsev A, Shlyakhtenko LS, Ukraintsev E, Zaikova TO, Keana JFW, Lyubchenko YL. Nanomedicine and protein misfolding diseases. Nanomedicine. 2005; 1(4):300–305.Google Scholar
  62. [62]
    Wolozin B, Behl C. Mechanisms of neurodegenerative disorders. Arch Neurol. 2000; 57(6):793–796.CrossRefGoogle Scholar
  63. [63]
    Say R, Kilic GA, Ozcan AA, Hur D, Yilmaz F, Kutlu M, Yazar S, Denizli A, Diltemiz SE, Ersoz A. Investigation of photosensitively bioconjugated targeted quantum dots for the labeling of Cu/Zn superoxide dismutase in fixed cells and tissue sections. Histochem Cell Biol. 2011; 135(5):523–530.CrossRefGoogle Scholar
  64. [64]
    Choi I, Yang YI, Jeong E, Kim K, Hong S, Kang T, Yi J. Colorimetric tracking of protein structural evolution based on the distance-dependent light scattering of embedded gold nanoparticles. Chem Commun. 2013; 48(17):2286–2288.CrossRefGoogle Scholar
  65. [65]
    Hong S, Choi I, Lee S, Yang YI, Kang T, Yi J. Sensitive and colorimetric detection of the structural evolutions of superoxide dismutase with gold nanoparticles. Anal Chem. 2009; 81(4):1378–1382.CrossRefGoogle Scholar
  66. [66]
    Choi I, Lee LP. Rapid detection of Aβ aggregation and inhibition by dual functions of gold nanoplasmic particles: Catalytic activator and optical reporter. ACS Nano. 2013; 7(7):6268–6277.CrossRefGoogle Scholar
  67. [67]
    Choi I, Song HD, Lee S, Yang YI, Nam JH, Kim SJ, Sung J-J, Kang T, Yi J. Direct observation of defects and increased ion permeability of a membrane induced by structurally disordered Cu/Zn-superoxide dismutase aggregates. PLoS ONE. 2011; doi: 10.1371/journal.pone.0028982.Google Scholar
  68. [68]
    Choi I, Yang YI, Song HD, Lee J-S, Kang T, Sung J-J, Yi J. Lipid molecules induce the cytotoxic aggregation of Cu/Zn superoxide dismutase with structurally disordered regions. Biochim Biophys Acta Mol Basis Dis. 2011; 1812(1):41–48.CrossRefGoogle Scholar
  69. [69]
    Nicholas J, Wiley AB, Madhankumar RM, Mitchell EB, Neely ER, Gregory L, Douds ZS, James RC. Lipopolysaccharide modified liposomes for amyotropic lateral sclerosis therapy: Efficacy in SOD1 mouse model. Adv Nanopart. 2012; 1(3):44–53.CrossRefGoogle Scholar
  70. [70]
    Yun M, Micheal EB, Dolores T, Harriet D, Uday BK. Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene. Mol Vis. 2007; 13:746–757.Google Scholar
  71. [71]
    Choi I, Huh YS, Erickson D. Size-selective concentration and label-free characterization of protein aggregates using a Raman active nanofluidic device. Lab Chip. 2011; 11:632–638.CrossRefGoogle Scholar
  72. [72]
    Choi I, Huh YS, Erickson D. Ultra-sensitive, label-free probing of the conformational characteristics of amyloid beta aggregates with a SERS active nanofluidic device. Microfluid Nanofluid. 2012; 12(1–4):663–669.CrossRefGoogle Scholar
  73. [73]
    van de Stolpe A, den Toonder J. Workshop meeting report Organs-on-Chips: human disease models. Lab Chip. 2013; 13(18):3449–3470.CrossRefGoogle Scholar
  74. [74]
    Kunze A, Lengacher S, Dirren E, Aebischer P, Magistretti PJ, Renaud P. Astrocyte-neuron co-culture on microchips based on the model of SOD mutation to mimic ALS. Integr Biol. 2013; 5(7):964–975.CrossRefGoogle Scholar

Copyright information

© Korean Society of Medical and Biological Engineering and Springer 2013

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations