Skip to main content
Log in

Forming vascular networks within functional cardiac tissue constructs

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Over the years much has been attempted to generate engineered cardiac tissue. One approach is culturing cells within engineered biodegradable scaffolds to provide temporary elastic support and to replace the necrotic cardiomyocytes. In particular, these engineered tissue construct have been of great interest as an implantable patch over a region of the myocardial infarct to stimulate the formation of micro-vessel growth and thus increase blood flow through the myocardium. For the successful revascularization after myocardial infarction, vascularization within three-dimensional engineered cardiac tissue construct has become important for stimulating the formation of a mature microvascular network. In this review, various approaches and recent advances in vascularization of engineered cardiac patch are highlighted and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaziano TA, Bitton A, Anand S, Abrahams-Gessel S, Murphy A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Prob Cardiology. 2010; 35:72–115.

    Article  Google Scholar 

  2. Jaffe AS, Apple FS. The third universal definition of myocardial infarction—moving forward. Clin Chem. 2012; 58:1727–1728.

    Article  Google Scholar 

  3. Christman KL, Lee RJ. Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol. 2006; 48:907–913.

    Article  Google Scholar 

  4. Stroncek JD, Reichert WM. Overview of wound healing in different tissue types. In: Reichert WM, editor. Indwelling neural implants: strategies for contending with the in vivo environment. Boca Raton (FL)2008.

    Google Scholar 

  5. Rane AA, Christman KL. Biomaterials for the treatment of myocardial infarction: a 5-year update. J Am Coll Cardiol. 2011; 58:2615–2629.

    Article  Google Scholar 

  6. Del Re DP, Sadoshima J. Optimizing cell-based therapy for cardiac regeneration. Circulation. 2009; 120:831–834.

    Article  Google Scholar 

  7. Hou D, Youssef EA, Brinton TJ, Zhang P, Rogers P, Price ET, Yeung AC, Johnstone BH, Yock PG, March KL. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation. 2005; 112:I150–I156.

    Google Scholar 

  8. Wang T, Jiang XJ, Tang QZ, Li XY, Lin T, Wu DQ, Zhang XZ, Okello E. Bone marrow stem cells implantation with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel improves cardiac function after myocardial infarction. Acta Biomater. 2009; 5:2939–2944.

    Article  Google Scholar 

  9. Lesman A, Habib M, Caspi O, Gepstein A, Arbel G, Levenberg S, Gepstein L. Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng Part A. 2010; 16:115–125.

    Article  Google Scholar 

  10. Blanche C, Kamlot A, Blanche DA, Kearney B, Magliato KE, Czer LS, Trento A. Heart transplantation with donors fifty years of age and older. J Thorac Cardiovasc Surg. 2002; 123:810–815.

    Article  Google Scholar 

  11. Troy BL, Pombo J, Rackley CE. Measurement of left ventricular wall thickness and mass by echocardiography. Circulation. 1972; 45:602–611.

    Article  Google Scholar 

  12. Vunjak-Novakovic G, Tandon N, Godier A, Maidhof R, Marsano A, Martens TP, Radisic M. Challenges in cardiac tissue engineering. Tissue Eng Part B Rev. 2010; 16:169–187.

    Article  Google Scholar 

  13. Finosh GT, Jayabalan M. Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure: new developments and challenges. Biomatter. 2012; 2:1–14.

    Article  Google Scholar 

  14. Venugopal JR, Prabhakaran MP, Mukherjee S, Ravichandran R, Dan K, Ramakrishna S. Biomaterial strategies for alleviation of myocardial infarction. J R Soc Interface. 2012; 9:1–19.

    Article  Google Scholar 

  15. Shannon AW, Harrigan RA. General pharmacologic treatment of acute myocardial infarction. Emerg Med Clin North Am. 2001; 19:417–431.

    Article  Google Scholar 

  16. Chen ZM, Jiang LX, Chen YP, Xie JX, Pan HC, Peto R, Collins R, Liu LS. Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet. 2005; 366:1607–1621.

    Article  Google Scholar 

  17. Herbert JM, Frehel D, Vallee E, Kieffer G, Gouy D, Berger Y, Necciari J, Defreyn G, Maffrand JP. Clopidogrel, a novel antiplatelet and antithrombotic agent. Cardiovasc Drug Rev. 1993; 11:180–198.

    Article  Google Scholar 

  18. Gregorini L, Marco J. Ticlopidine and aspirin interactions. Heart. 1997; 77:11–12.

    Google Scholar 

  19. Weaver WD. The role of thrombolytic drugs in the management of myocardial infarction. Comparative clinical trials. Eur Heart J. 1996; 17Suppl F:9–15.

    Article  Google Scholar 

  20. Ghali WA, Donaldson CR, Knudtson ML, Lewis SJ, Maxwell CJ, Tu JV. Rising to the challenge: transforming the treatment of ST-segment elevation myocardial infarction. CMAJ. 2003; 169:35–37.

    Google Scholar 

  21. Oxenham H, Sharpe N. Angiotensin-converting enzyme inhibitor treatment after myocardial infarction. A selective approach for maximum benefit. J Am Coll Cardiol. 2000; 36:2054–2055.

    Article  Google Scholar 

  22. Aros F, Loma-Osorio A, Vila J, Lopez-Bescos L, Cunat J, Rodriguez E, San Jose JM, Heras M, Marrugat J. Effect of combined beta-blocker and angiotensin-converting enzyme inhibitor treatment on 1-year survival after acute myocardial infarction: findings of the PRIAMHO-II registry. Rev Esp Cardiol. 2006; 59:313–320.

    Article  Google Scholar 

  23. Blankenhorn DH, Hodis HN. Atherosclerosis—reversal with therapy. Western J Med. 1993; 159:172–179.

    Google Scholar 

  24. Zijlstra F. Angioplasty vs thrombolysis for acute myocardial infarction: a quantitative overview of the effects of interhospital transportation. Eur Heart J. 2003; 24:21–23.

    Article  Google Scholar 

  25. Cutlip DE, Windecker S, Mehran R, Boam A, Cohen DJ, van Es GA, Steg PG, Morel MA, Mauri L, Vranckx P, McFadden E, Lansky A, Hamon M, Krucoff MW, Serruys PW. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation. 2007; 115:2344–2351.

    Article  Google Scholar 

  26. Betriu A, Masotti M, Serra A, Alonso J, Fernández-Avilés F, Gimeno F, Colman T, Zueco J, Delcan JL, Garcia E, Calabuig J. Randomized comparison of coronary stent implantation and balloon angioplasty in the treatment of de novo coronary artery lesions (START)A four-year follow-up. J Am Coll Cardiol. 1999; 34:1498–1506.

    Article  Google Scholar 

  27. Eagle KA, Guyton RA, Davidoff R, Ewy GA, Fonger J, Gardner TJ, Gott JP, Herrmann HC, Marlow RA, Nugent W, O’Connor GT, Orszulak TA, Rieselbach RE, Winters WL, Yusuf S, Gibbons RJ, Alpert JS, Eagle KA, Gardner TJ, Garson A, Gregoratos G, Russell RO, Ryan TJ, Smith SC. ACC/AHA guidelines for coronary artery bypass graft surgery: executive summary and recommendations: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to revise the 1991 guidelines for coronary artery bypass graft surgery). Circulation. 1999; 100:1464–1480.

    Article  Google Scholar 

  28. Kellar RS, Shepherd BR, Larson DF, Naughton GK, Williams SK. Cardiac patch constructed from human fibroblasts attenuates reduction in cardiac function after acute infarct. Tissue Eng. 2005; 11:1678–1687.

    Article  Google Scholar 

  29. Callegari A, Bollini S, Iop L, Chiavegato A, Torregrossa G, Pozzobon M, Gerosa G, De Coppi P, Elvassore N, Sartore S. Neovascularization induced by porous collagen scaffold implanted on intact and cryoinjured rat hearts. Biomaterials. 2007; 28:5449–5461.

    Article  Google Scholar 

  30. Pozzobon M, Bollini S, Iop L, De Gaspari P, Chiavegato A, Rossi CA, Giuliani S, Fascetti Leon F, Elvassore N, Sartore S, De Coppi P. Human bone marrow-derived CD133(+) cells delivered to a collagen patch on cryoinjured rat heart promote angiogenesis and arteriogenesis. Cell Transplant. 2010; 19:1247–1260.

    Article  Google Scholar 

  31. Naito H, Melnychenko I, Didié M, Schneiderbanger K, Schubert P, Rosenkranz S, Eschenhangen T, Zimmermann WH. Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation. 2006; 114:I72–I78.

    Article  Google Scholar 

  32. Dvir T, Kedem A, Ruvinov E, Levy O, Freeman I, Landa N, Holbova R, Feinberg MS, Dror S, Etzion Y, Leor J, Cohen S. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Natl Acad Sci USA. 2009; 106:14990–14995.

    Article  Google Scholar 

  33. Hanjaya-Putra D, Gerecht S. Preview. Mending the failing heart with a vascularized cardiac patch. Cell Stem Cell. 2009; 5:575–576.

    Article  Google Scholar 

  34. Suzuki R, Hattori F, Itabashi Y, Yoshioka M, Yuasa S, Manabe-Kawaguchi H, Murata M, Makino S, Kokaji K, Yozu R, Fukuda K. Omentopexy enhances graft function in myocardial cell sheet transplantation. Biochem Biophys Res Commun. 2009; 387: 353–359.

    Article  Google Scholar 

  35. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282:1145–1147.

    Article  Google Scholar 

  36. Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science. 2000; 287:1427–1430.

    Article  Google Scholar 

  37. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, Passier R, Tertoolen L. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003; 107:2733–2740.

    Article  Google Scholar 

  38. Kehat I, Gepstein A, Spira A, Itskovitz-Eldor J, Gepstein L. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ Res. 2002; 91:659–661.

    Article  Google Scholar 

  39. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001; 108:407–414.

    Google Scholar 

  40. Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R. Endothelial cells derived from human embryonic stem cells. Natl Acad Sci USA. 2002; 99:4391–4396.

    Article  Google Scholar 

  41. Kim JH, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature. 2002; 418:50–56.

    Article  Google Scholar 

  42. Bjorklund LM, Sánchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Natl Acad Sci USA. 2002; 99:2344–2349.

    Article  Google Scholar 

  43. Zhang SC, Wernig M, Duncan ID, Brüstle O, Thomson JA. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 2001; 19:1129–1133.

    Article  Google Scholar 

  44. Schuldiner M, Eiges R, Eden A, Yanuka O, Itskovitz-Eldor J, Goldstein RS, Benvenisty N. Induced neuronal differentiation of human embryonic stem cells. Brain Res. 2001; 913:201–205.

    Article  Google Scholar 

  45. Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T. Neural progenitors from human embryonic stem cells. Nat Biotechnol. 2001; 19:1134–1140.

    Article  Google Scholar 

  46. Graf T, Enver T. Forcing cells to change lineages. Nature. 2009; 462:587–594.

    Article  Google Scholar 

  47. Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A. Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano. 2013; 7:2891–2897.

    Article  Google Scholar 

  48. Shin SR, Bae H, Cha JM, Mun JY, Chen YC, Tekin H, Shin H, Farshchi S, Dokmeci MR, Tang S, Khademhosseini A. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano. 2012; 6:362–372.

    Article  Google Scholar 

  49. Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, Nikkhah M, Khabiry M, Azize M, Kong J, Wan KT, Palacios T, Dokmeci MR, Bae H, Tang XS, Khademhosseini A. Carbonnanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano. 2013; 7:2369–2380.

    Article  Google Scholar 

  50. Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, Jin H, Parker KK, Langer R, Kohane DS. Nanowired threedimensional cardiac patches. Nat Nanotechnol. 2011; 6:720–725.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojae Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Bae, H. Forming vascular networks within functional cardiac tissue constructs. Biomed. Eng. Lett. 3, 138–143 (2013). https://doi.org/10.1007/s13534-013-0106-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-013-0106-y

Keywords

Navigation