Skip to main content
Log in

Mechanics of xylem sap drinking

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Despite the significant tension of xylem sap, many insects feed on the xylem sap. Because of the relatively little nutrient content of the xylem sap, feeding rates are up to 1000 times their body mass in a 24 hour period, which requires a suction pressure that may exceed the maximum tension that muscles can generally generate. This review focuses on the mechanical aspects of xylem sap feeding, especially in estimating the xylem sap tension and the suction pressure for xylem sap drinking. We discuss the inconsistencies of xylem sap feeding under tension with the maximum tension of the muscles, and present an overview of possible explanations for this discrepancy. It is expected that X-ray visualization techniques and microfluidics using hydrogel can be effectively used to elucidate the mechanics of xylem sap feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raven JA. Phytophages of xylem and phloem: a comparison of animal and plant sap-feeders. Adv Ecol Res. 1983; 13:136–204.

    Google Scholar 

  2. Pollard DG. Stylet penetration and feeding damage of Eupteryx melissae Curtis (Hemiptera, Cicadellidae) on sage. B Entomol Res. 1968; 58:55–71.

    Article  Google Scholar 

  3. Esau K. Plants, viruses and insects. Cambridge: Harvard University Press; 1961.

    Google Scholar 

  4. Mittler TE. Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin)(Homoptera: Aphididae). I. The uptake of phloem sap. J Exp Biol. 1957; 34:334–341.

    Google Scholar 

  5. Mittler TE. Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin)(Homoptera: Aphididae). II. The nitrogen and sugar composition of ingested phloem sap and excreted honeydew. J Exp Biol. 1958; 35:74–84.

    Google Scholar 

  6. Mittler TE. Water tensions in plants-an entomological approach. Ann Entomol Soc Am. 1967; 60:1074–1076.

    Google Scholar 

  7. Wiegert RG. The ingestion of xylem sap by meadow spittlebugs, Philaenus spumarius (L.) Am Midl Nat. 1964; 71: 422–428.

    Article  Google Scholar 

  8. Horsfield D. Evidence for xylem feeding by Philaenus spumarius (L.) (Homoptera: Cercopidae). Entomol Exp Appl. 1978; 24:95–99.

    Article  Google Scholar 

  9. Pockman WT, Sperry JS, O’Leary JW. Sustained and significant negative water pressure in xylem. Nature. 1995; 378:715–716.

    Article  Google Scholar 

  10. Schmidt-Nielsen K. Animal Physiology: adaptation and environment. Cambridge: Cambridge University Press; 1975.

    Google Scholar 

  11. Crews L, McCully M, Canny M, Huang C, Ling L. Xylem feeding by spittlebug nymphs: some observations by optical and cryo-scanning electron microscopy. Am J Bot. 1998; 85:449–460.

    Article  Google Scholar 

  12. Redak RA, Purcell AH, Lopes JRS, Blua MJ, Mizell RF, Andersen PC. The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu Rev Entomol. 2004; 49:243–270.

    Article  Google Scholar 

  13. Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT. Sap pressures in vascular plants negative hydrostatic pressure can be measured in plants. Science. 1965; 148:339–346.

    Article  Google Scholar 

  14. Wei C, Tyree MT, Steudle E. Direct measurement of xylem pressure in leaves of intact maize plants. A test of the cohesiontension theory taking hydraulic architecture into consideration. Plant Physiol. 1999; 121:1191–1205.

    Article  Google Scholar 

  15. Tyree MT, Zimmermann MH. Xylem Structure and the Ascent of Sap. 2nd ed. Berlin: Springer; 2002.

    Book  Google Scholar 

  16. Andersen PC, Brodbeck BV, Mizell RF. Feeding by the leafhopper Homalodisca coagulata in relation to xylem fluid chemistry and tension. J Insect Physiol. 1992; 38:611–622.

    Article  Google Scholar 

  17. Apfel RE. Acoustic cavitation inception. Ultrasonics. 1984; 22:167–173.

    Article  Google Scholar 

  18. Greenspan M, Techiegg CE. Radiation-induced acoustic cavitation; apparatus and some results. J Res NBS C Eng Inst. 1967; 71:299–311.

    Google Scholar 

  19. Malone M, Watson R, Pritchard J. The spittlebug Philaenus spumarius feeds from mature xylem at the full hydraulic tension of the transpiration stream. New Phytol. 1999; 143:261–271.

    Article  Google Scholar 

  20. Lee SJ, Kim BH, Lee JY. Experimental study on the fluid mechanics of blood sucking in the proboscis of a female mosquito. J Biomech. 2009; 42:857–864.

    Article  Google Scholar 

  21. Borrell BJ. Mechanics of nectar feeding in the orchid bee Euglossa imperialis: pressure, viscosity and flow. J Exp Biol. 2006; 209:4901–4907.

    Article  Google Scholar 

  22. May PG. Nectar uptake rates and optimal nectar concentrations of two butterfly species. Oecologia. 1985; 66:381–3896.

    Article  Google Scholar 

  23. Pivnick KA, McNeil JN. Effects of nectar concentration on butterfly feeding: measured feeding rates for Thymelicus lineola (Lepidoptera: Hesperiidae) and a general feeding model for adult Lepidoptera. Oecologia. 1985; 66: 226–237.

    Google Scholar 

  24. Kingsolver JG, Daniel TL. Mechanical determinants of nectar feeding strategy in hummingbirds: energetics, tongue morphology, and licking behavior. Oecologia. 1983; 60:214–226.

    Article  Google Scholar 

  25. Bennet-Clark HC. Negative pressures produced in the pharyngeal pump of the blood-sucking bug, Rhodnius prolixus. J Exp Biol. 1963; 40:223–229.

    Google Scholar 

  26. Sperry JS, Saliendra NZ, Pockman WT, Cochard H, Cruiziat P, Davis SD, Ewers FW, Tryee MT. New evidence for large negative xylem pressures and their measurement by the pressure chamber method. Plant Cell Environ. 1996; 19:427–436.

    Article  Google Scholar 

  27. Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Phys. 1989; 40:19–36.

    Article  Google Scholar 

  28. Pollard DG. Plant penetration by feeding aphids (Hemiptera, Aphidoidea): a review. B Entomol Res. 1973; 62:631–714.

    Article  Google Scholar 

  29. Miles PW. The saliva of Hemiptera. Adv Insect Physiol. 1972; 9:183–255.

    Article  Google Scholar 

  30. Leighton TG. The acoustic bubble. San Diego: Academic Press; 1994.

    Google Scholar 

  31. Kim BH, Kim HK, Lee SJ, Experimental analysis of the bloodsucking mechanism of female mosquitoes. J Exp Biol. 2011; 214:1163–1169.

    Article  Google Scholar 

  32. Prakash M, Steele M. The hungry fly: Hydrodynamics of feeding in the common house fly. Phys Fluids. 2011; 23:091110.

    Article  Google Scholar 

  33. Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA. The dynamics of embolism repair in xylem: In vivo visualizations using high-resolution computed tomography. Plant Physiol. 2010; 154:1088–1095.

    Article  Google Scholar 

  34. Brodersen CR, McElrone AJ, Choat B, Lee EF, Shackel KA, Matthews MA. In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiol. 2013; 161:1820–1829.

    Article  Google Scholar 

  35. Lee SJ, Hwang BG, Kim HK. Hydraulic characteristics of water-refilling process in excised roots of Arabidopsis. Planta, 2013; 238:307–315.

    Article  Google Scholar 

  36. Briggs LJ. Limiting negative pressure of water. J Appl Phys. 1950; 21:721–722.

    Article  Google Scholar 

  37. Rein M, Meier GEA. On the influence of different parameters on heterogeneous shock cavitation. J Acoust Soc Am. 1990; 88:1921–1928.

    Article  Google Scholar 

  38. Wilson DA, Hoyt JW, McKune JW. Measurement of tensile strength of liquids by an explosion technique. Nature. 1975; 253:723–725.

    Article  Google Scholar 

  39. Wheeler TD, Stroock AD. The transpiration of water at negative pressures in a synthetic tree. Nature. 2008; 455: 208–212.

    Article  Google Scholar 

  40. Vincent O, Marmottant P, Quinto-Su PA, Ohl CD. Birth and Growth of cavitation bubbles within water under tension confined in a simple synthetic tree. Phys Rev Lett. 2012; 108:184502.

    Article  Google Scholar 

  41. Holtta T, Vesala T, Nkinmaa E. A model of bubble growth leading to xylem conduit embolism. J Theor Biol. 2007; 249: 111–123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonjung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, W. Mechanics of xylem sap drinking. Biomed. Eng. Lett. 3, 144–148 (2013). https://doi.org/10.1007/s13534-013-0104-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-013-0104-0

Keywords

Navigation