Skip to main content
Log in

Micro-/nanotechnology-based isolation and clinical significance of circulating tumor cells

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Circulating tumor cells (CTCs) are extremely rare in peripheral blood, and they are mostly derived from primary and metastatic epithelial tumors. Recent studies have reported that the presence of CTCs is an independent predictor of progression-free survival and overall survival of metastatic cancer patients, and is proportional to the progression of the disease when a carcinoma recurs. Because of the extremely low concentration of CTCs in peripheral blood (1–2 per 10 billion blood cells), the isolation and characterization of CTCs are major technological challenges. Recent micro-/nano-based technical advances are providing new opportunities for the isolation of purer CTCs from peripheral blood and better cellular and molecular characterization. This review focuses on available micro-/nano-based techniques for the detection of CTCs, clinical utilities of CTCs and their limitations, and future perspectives in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Gerges N, Rak J, Jabado N. New technologies for the detection of circulating tumour cells. Brit Med Bull. 2010; 94(4):49–64.

    Article  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646–74.

    Article  Google Scholar 

  3. Gupta GP, Massague J: Cancer metastasis: building a framework. Cell. 2006; 127(4):679–95.

    Article  Google Scholar 

  4. Racila E, Euhus D, Weiss AJ, Rao C, McConnell J, Terstappen LWMM, Uhr JW. Detection and characterization of carcinoma cells in the blood. P Natl Acad Sci USA. 1998; 95:4589–94.

    Article  Google Scholar 

  5. Fehm T, Sagalowsky A, Clifford E, Beitsch P, Saboorian H, Euhus D, Meng S, Morrison L, Tucker T, Lane N, et al. Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant. Clin Cancer Res. 2002; 8:2073–84.

    Google Scholar 

  6. Hsemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, Forni G, Eils R, Fehm T, Riethmller G, Klein1 CA. Systemic spread is an early step in breast cancer. Cancer Cell. 2008; 13:58–68.

    Article  Google Scholar 

  7. Mostert B, Sleijfer S, Foekens JA, Gratama JW. Circulating tumor cells (CTCs): Detection methods and their clinical relevance in breast cancer. Cancer Treat Rev. 2009; 35(5):463–74.

    Article  Google Scholar 

  8. Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889; 133:571–3.

    Article  Google Scholar 

  9. Chiang AC, Massague J. Molecular basis of metastasis. N Engl J Med. 2008; 359(26):2814–23.

    Article  Google Scholar 

  10. May CD, Sphyris N, Evans KW, Werden SJ, Guo W, Mani SA. Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res. 2011; 13(1):202.

    Google Scholar 

  11. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002; 2(8):563–72.

    Article  Google Scholar 

  12. Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008; 8:329–40.

    Article  Google Scholar 

  13. Mller V, Stahmann N, Riethdorf S, Rau T, Zabel T, Goetz A, FritzJanicke, Pantel K. Criculating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clin Cancer Res. 2005; 11:3678–85.

    Article  Google Scholar 

  14. Moreno JG, OÍhara SM, Gross S, Doyle G, Fritsche H, Gomella LG, Terstappen LWMM. Changes in circulating carcinoma cells in patients with metastatic prostate cancer correlate with disease status. Urology. 2001; 58:386–92.

    Article  Google Scholar 

  15. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AGJ, Uhr JW, Terstappen LWMM. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004; 10:6897–904.

    Article  Google Scholar 

  16. Cristofanilli M, Budd T, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LWMM, Hayes DF. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. New Engl J Med. 2004; 351:781–91.

    Article  Google Scholar 

  17. Mavroudis D. Criculating cancer cells. Ann Oncol. 2010; 21:vii95–vii100.

    Article  Google Scholar 

  18. Naoe M, Ogawa Y, Morita J, Omori K, Takeshita K, Shichijyo T, Okumura T, Igarashi A, Yanaihara A, Iwamoto S, et al. Detection of circulating urothelial cancer cells in the blood using the cell search system. Cancer. 2007; 109(7):1439–45.

    Article  Google Scholar 

  19. Liberti PA, Rao CG, Terstappen LWMM. Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood. J Magn Magn Mater. 2001; 225:301–7.

    Article  Google Scholar 

  20. Griwatz C, Brandt B, Assmann G, Znker KS. An immunological enrichment method for epithelial cells from peripheral blood. J Immunol Methods. 1995; 185:251–65.

    Article  Google Scholar 

  21. Riethdorf S, Fritsche H, Mller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Jnicke F, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: A validation study of the cellsearch system. Clin Cancer Res. 2007; 13:920–8.

    Article  Google Scholar 

  22. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007; 450:1235–9.

    Article  Google Scholar 

  23. Stott SL, Hsu C-H, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK, et al. Isolation of circulating tumor cells using a microvortexgenerating herringbone-chip. P Natl Acad Sci USA. 2010; 107(43):18392–7.

    Article  Google Scholar 

  24. Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A, Muschel RJ. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med. 2000; 6(1):100–2.

    Article  Google Scholar 

  25. Adams AA, Okagbare PI, Feng J, Hupert ML, Patterson D, Gttert J, McCarley RL, Nikitopoulos D, Murphy MC, Soper SA. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J Am Chem Soc. 2008; 130(27):8633–41.

    Article  Google Scholar 

  26. Dharmasiri U, Balamurugan S, Adams AA, Okagbare PI, Obubuafo A, Soper SA. Highly efficient capture and enumeration of low abundance prostate cancer cells using prostate-specific membrane antigen aptamers immobilized to a polymeric microfluidic device. Electrophoresis. 2009; 30(18):3289–300.

    Article  Google Scholar 

  27. Wang S, Liu K, Liu J, Yu ZT-F, Xu X, Zhao L, Lee T, Lee EK, Reiss J, Lee Y-K, et al. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Edit. 2011; 50(13):3084–8.

    Article  Google Scholar 

  28. Mohamed H, McCurdy LD, Szarowski DH, Duva S, Turner JN, Caggana M. Development of a rare cell fractionation device: application for cancer detection. IEEE T Nanobioscience 2004; 3:251–6.

    Article  Google Scholar 

  29. Zheng S, Lin H, Liu J-Q, Balic M, Datar R, Cote RJ, Tai Y-C. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A. 2007; 1162(2):154–61.

    Article  Google Scholar 

  30. Lin HK, Zheng S, Williams AJ, Balic M, Groshen S, Scher HI, Fleisher M, Stadler W, Datar RH, Tai Y-C, Cote RJ. Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res. 2010; 16(20):5011–8.

    Article  Google Scholar 

  31. Zheng S, Lin HK, Lu B, Williams A, Datar R, Cote RJ, Tai Y-C. 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed Microdevices. 2011; 13(1):203–13.

    Article  Google Scholar 

  32. Kim MS, Lee J-G, Sim TS, Kim YJ, Park J-M, Baek S, Oh J-M, Jeong H, Lee HJ, Lee J-Y, et al. A novel fully-automated microfilter platform using selective size amplification of circulating tumor cells. The 15th Int Conf on Miniaturized Syst for Chem and Life Sci (Micro-TAS 2011). Seattle, USA. 2011; 2071–3.

  33. Marrinucci D, Bethel K, Bruce RH, Curry DN, Hsieh B, Humphrey M, Krivacic RT, Kroener J, Kroener L, Ladanyi A, et al. Case study of the morphologic variation of circulating tumor cells. Hum Pathol. 2007; 38(3):514–9.

    Article  Google Scholar 

  34. Yang J, Huang Y, Wang X, Wang X-B, Becker FF, Gascoyne PRC. Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion. Biophys J. 1999; 76:3307–14.

    Article  Google Scholar 

  35. Becker FF, Wang X-B, Huang Y, Pethig R, Vykoukal J, Gascoyne PRC. Separation of human breast cancer cells from blood by differential dielectric affinity. P Natl Acad Sci USA. 1995; 92:860–4.

    Article  Google Scholar 

  36. Huang Y, Wang X-B, Becker FF, Gascoyne PRC. Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys J. 1997; 73(2):1118–29.

    Article  Google Scholar 

  37. Yang J, Huang Y, Wang X-B, Becker FF, Gascoyne PRC. Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Anal Chem. 1999; 71(5):911–8.

    Article  Google Scholar 

  38. Wang X-B, Yang J, Huang Y, Vykoukal J, Becker FF, Gascoyne PRC. Cell separation by dielectrophoretic field-flow-fractionation. Anal Chem. 2000; 72(4):832–9.

    Article  Google Scholar 

  39. Kim S, Lee H, Han S-I, Park M-J, Jeon C-W, Joo Y-D, Choi I-H, Han K-H. A CTC-microseparator for isolation of circulating tumor cells using lateral magnetophoresis and magnetic nanobeads. The 15th Int Conf on Miniaturized Syst for Chem and Life Sci (Micro-TAS 2011). Seattle, USA. 2011; 1894–6.

  40. Jung J, Han K-H. Lateral-driven continuous magnetophoretic separation of blood cells. Appl Phys Lett. 2008; 93:223902.

    Article  Google Scholar 

  41. Paterlini-Brechot P, Benali NL. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 2007; 253(2):180–204.

    Article  Google Scholar 

  42. Theodoropoulos PA, Polioudaki H, Agelaki S, Kallergi G, Saridaki Z, Mavroudis D, Georgoulias V. Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett. 2010; 288(1):99–106.

    Article  Google Scholar 

  43. Leversha MA, Han J, Asgari Z, Danila DC, Lin O, Gonzalez-Espinoza R, Anand A, Lilja H, Heller G, Fleisher M, Scher HI. Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer. Clin Cancer Res. 2009; 15(6):2091–7.

    Article  Google Scholar 

  44. Attard G, Swennenhuis JF, Olmos D, Reid AH, Vickers E, A’Hern R, Levink R, Coumans F, Moreira J, Riisnaes R, et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 2009; 69(7):2912–8.

    Article  Google Scholar 

  45. Alix-Panabieres C, Vendrell JP, Pelle O, Rebillard X, Riethdorf S, Muller V, Fabbro M, Pantel K. Detection and characterization of putative metastatic precursor cells in cancer patients. Clin Chem. 2007; 53(3):537–9.

    Article  Google Scholar 

  46. Ameri K, Luong R, Zhang H, Powell AA, Montgomery KD, Espinosa I, Bouley DM, Harris AL, Jeffrey SS. Circulating tumour cells demonstrate an altered response to hypoxia and an aggressive phenotype. Br J Cancer. 2010; 102(3):561–9.

    Article  Google Scholar 

  47. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, Massague J. Tumor self-seeding by circulating cancer cells. Cell. 2009; 139(7):1315–26.

    Article  Google Scholar 

  48. Lage JM, Leamon JH, Pejovic T, Hamann S, Lacey M, Dillon D, Segraves R, Vossbrinck B, Gonzalez A, Pinkel D, et al. Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH. Genome Res. 2003; 13(2):294–307.

    Article  Google Scholar 

  49. Kim E-S, Hong BJ, Park C-W, Kim Y, Park JW, Choi KY. Effects of lateral spacing on enzymatic on-chip DNA polymerization. Biosens Bioelectron. 2011; 26(5):2566–73.

    Article  Google Scholar 

  50. Markou A, Strati A, Malamos N, Georgoulias V, Lianidou ES. Molecular characterization of circulating tumor cells in breast cancer by a liquid bead array hybridization assay. Clin Chem. 2011; 57(3):421–30.

    Article  Google Scholar 

  51. Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, Duncan C, Antipova A, Lee C, McKernan K, De La Vega FM, et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med. 2010; 2(20):20ra14.

    Article  Google Scholar 

  52. Bednarz-Knoll N, Alix-Panabieres C, Pantel K. Clinical relevance and biology of circulating tumor cells. Breast Cancer Res. 2011; 13(6):228.

    Article  Google Scholar 

  53. Wiedswang G, Borgen E, Schirmer C, Karesen R, Kvalheim G, Nesland JM, Naume B. Comparison of the clinical significance of occult tumor cells in blood and bone marrow in breast cancer. Int J Cancer. 2006; 118(8):2013–9.

    Article  Google Scholar 

  54. Liu MC, Shields PG, Warren RD, Cohen P, Wilkinson M, Ottaviano YL, Rao SB, Eng-Wong J, Seillier-Moiseiwitsch F, Noone AM, Isaacs C. Circulating tumor cells: a useful predictor of treatment efficacy in metastatic breast cancer. J Clin Oncol. 2009; 27(31):5153–9.

    Article  Google Scholar 

  55. Hou JM, Greystoke A, Lancashire L, Cummings J, Ward T, Board R, Amir E, Hughes S, Krebs M, Hughes A, et al. Evaluation of circulating tumor cells and serological cell death biomarkers in small cell lung cancer patients undergoing chemotherapy. Am J Pathol. 2009; 175(2):808–16.

    Article  Google Scholar 

  56. de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, Doyle GV, Terstappen LW, Pienta KJ, Raghavan D. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008; 14(19):6302–9.

    Article  Google Scholar 

  57. Krebs MG, Sloane R, Priest L, Lancashire L, Hou JM, Greystoke A, Ward TH, Ferraldeschi R, Hughes A, Clack G, et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol. 2011; 29(12):1556–63.

    Article  Google Scholar 

  58. Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, Inserra E, Diederichs S, Iafrate AJ, Bell DW, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008; 359(4):366–77.

    Article  Google Scholar 

  59. Yoon SO, Kim YT, Jung KC, Jeon YK, Kim BH, Kim CW. TTF-1 mRNA-positive circulating tumor cells in the peripheral blood predict poor prognosis in surgically resected non-small cell lung cancer patients. Lung Cancer-J IASLC. 2011; 71(2):209–16.

    Article  Google Scholar 

  60. Miura N, Nakamura H, Sato R, Tsukamoto T, Harada T, Takahashi S, Adachi Y, Shomori K, Sano A, Kishimoto Y, et al. Clinical usefulness of serum telomerase reverse transcriptase (hTERT) mRNA and epidermal growth factor receptor (EGFR) mRNA as a novel tumor marker for lung cancer. Cancer Sci. 2006; 97(12):1366–73.

    Article  Google Scholar 

  61. Hou JM, Krebs M, Ward T, Sloane R, Priest L, Hughes A, Clack G, Ranson M, Blackhall F, Dive C. Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol. 2011; 178(3):989–96.

    Article  Google Scholar 

  62. Lin Y, Trouillon R, Safina G, Ewing AG. Chemical analysis of single cells. Anal Chem. 2011; 83(12):4369–92.

    Article  Google Scholar 

  63. Shi Q, Qin L, Wei W, Geng F, Fan R, Shin YS, Guo D, Hood L, Mischel PS, Heath JR. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. P Natl Acad Sci USA. 2012; 109(2):419–24.

    Article  Google Scholar 

  64. Zare RN, Kim S. Microfluidic platforms for single-cell analysis. Annu Rev Biomed Eng. 2010; 12:187–201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Ho Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, ES., Kim, S., Choi, K.Y. et al. Micro-/nanotechnology-based isolation and clinical significance of circulating tumor cells. Biomed. Eng. Lett. 2, 78–87 (2012). https://doi.org/10.1007/s13534-012-0058-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-012-0058-7

Keywords

Navigation