Skip to main content
Log in

Lymphocyte image segmentation using functional link neural architecture for acute leukemia detection

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

Microscopic examination of stained blood slides is an indispensable technique for hematological disease recognition. Diagnosis based on human visual interpretation is often subjected to inter and intra observer variations, slowness, tiredness and operator experience. Accurate and authentic diagnosis of hematological neoplasia is essential in the planning of suitable surgery and chemotherapy. This paper aims at proposing a fast and simple framework for lymphocyte image segmentation.

Methods

Accurate segmentation of lymphocyte is essential as it facilitates automated leukemia detection in blood microscopic images. In this paper image segmentation is considered as a pixel classification problem and a novel neural architecture is employed to classify each pixel into cytoplasm, nucleus or background region. The network tuned for a set of images works well for other similar stained blood images.

Results

Comparative analysis with other standard techniques reveals that the proposed scheme outperforms its counterparts in terms of nucleus and cytoplasm extraction.

Conclusions

In this work, a neural network based lymphocyte image segmentation scheme is designed for automated leukemia detection. Desired segmentation accuracy in terms of nucleus and cytoplasm extraction is always high in automated disease recognition system and is achieved through the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Theml H, Diem H, Haferlach T. Color atlas of hematology: practical microscopic and clinical diagnosis. Thieme; 2004.

  2. Tkachuk CD, Hirschmann JV. Wintrobe’s atlas of clinical hematology. 1st ed. Lippincott Williams and Wilkins; 2007.

  3. Angulo J, Klossa J, Flandrin G. Ontology based lymphocyte population description using mathematical morphology on colour blood images. Cell Mol Biol. 2006; 52(6):2–15.

    Google Scholar 

  4. Ghosh M, Das D, Chakraborty C, Ray AK. Automated leukocyte recognition using fuzzy divergence. Micron. 2010; 41(7):840–846.

    Article  Google Scholar 

  5. Ko BC, Gim J, Nam J. Automatic white blood cell segmentation using stepwise merging rules and gradient vector flow snake. Micron. 2011; 42(7):695–705.

    Article  Google Scholar 

  6. Chakravarti GK, Bhattacharya K. A Handbook of clinical pathology: technique and interpretation. 5th ed. Academic Publishers; 2005.

  7. Zamani F, Safabakhsh R. An unsupervised gvf snake approach for white blood cell segmentation based on nucleus. Proc 8th Int Conf Signal Pr. 2006; volume 2.

  8. Piuri V, Scotti F. Morphological classification of blood leucocytes by microscope images. Proc IEEE Int Conf Comput Intell Meas Syst Appl. 2004; 103–108.

  9. Park JS, Keller JM. Fuzzy patch label relaxation in bone marrow cell segmentation. Proc IEEE Int Conf Syst Man Cybern. 1997; 2:1133–1138.

    Google Scholar 

  10. Montseny E, Sobrevilla P, Romani S. A fuzzy approach to white blood cells segmentation in color bone marrow images. Proc IEEE Int Conf Fuzzy Syst. 2004; 1:173–178.

    Google Scholar 

  11. Jiang K, Liao QM, Dai SY. A novel white blood cell segmentation scheme using scalespace filtering and watershed clustering. Proc IEEE Int Conf Mach Learn Cybern. 2003; 5:2820–2825.

    Google Scholar 

  12. Liao Q, Deng Y. An accurate segmentation method for white blood cell images. Proc IEEE Int Symp Biomed Imag. 2002; 245–248.

  13. Angulo J, Flandrin G. Microscopic image analysis using mathematical morphology: application to haematological cytology. 2003; 1:304–312.

    Google Scholar 

  14. Sinha N, Ramakrishnan AG. Blood cell segmentation using em algorithm. Proc Indian Conf Comput Vis Graph Im Proc. 2002.

  15. Umpon NT. Patch based white blood cell nucleus segmentation using fuzzy clustering. ECTI T Electr Electron Commun. 2005; 3(1):5–10.

    Google Scholar 

  16. Dorini LB, Minetto R, Leite NJ. White blood cell segmentation using morphological operators and scale-space analysis. Proc Brazilian Symp Comput Graph Image Proc. 2007; 294–304.

  17. Comaniciu D, Meer P. Cell image segmentation for diagnostic pathology in advanced algorithmic approaches to medical image segmentation: State-of-the-art applications in cardiology, neurology, mammography and pathology. Springer; 2001.

  18. Yang L, Meer P, Foran DJ. Unsupervised segmentation based on robust estimation and color active contour models. IEEE T Inform Tech Biomed. 2005; 9(3):475–486.

    Article  Google Scholar 

  19. Yi F, Chongxun Z, Chen P, Li L. White blood cell image segmentation using on-line trained neural network. Proc 27th Annu Int Conf The IEEE Eng Med Biol Soc. 2005; 6476–6479.

  20. Shitong W, Min W. A new detection algorithm based on fuzzy cellular neural networks for white blood cell detection. IEEE T Inform Technol Biomed. 2006; 10(1):5–10.

    Article  Google Scholar 

  21. Chinwaraphat S, Sanpanich A, Pintavirooj C, Sangworasil M, Tosranon P. A modified fuzzy clustering for white blood cell segmentation. Proc Third Int Symp Biomed Eng. 2008; 6:2259–2261.

    Google Scholar 

  22. Meurie C, Lezoray O, Charrier C, Elmoataz E. Combination of multiple pixel classifiers for microscopic image segmentation. IASTED Int J Robot Autom. 2005; 20(2):63–69. Special Issue on Colour Image Processing and Analysis for Machine Vision.

    Google Scholar 

  23. Ghosh M, Das D, Chakraborty C, Pala M, Maity AK, Pal SK, Ray AK. Statistical pattern analysis of white blood cell nuclei morphometry. Proc IEEE Students Technol Symp. 2010; 59–66.

  24. “Clemex Technologies Inc. Website”. “http://www.clemexhemato.com”.

  25. Swolin B, Simonsson P, Backman S, Lofqvist I, Bredin I, Johnsson M. Differential counting of blood leukocytes using automated microscopy and a decision support system based on artificial neural networks evaluation of diffmastertm octavia. Clin Lab Haematol. 2003; 25(3):139–147.

    Article  Google Scholar 

  26. Swolin B, Simonsson P, Backman S, Lofqvist I, Bredin I, Johnsson M. Performance evaluation of the cellavision dm96 system: wbc differentials by automated digital image analysis supported by an artificial neural network. Am J Clin Pathol. 2005; 124(5):770–780.

    Article  Google Scholar 

  27. Clarke LP, Velthuizen RP, Camacho MA, Heine JJ, Vaidyanathan M, Hall LO, Thatcher RW, Silbiger ML. Mri segmentation: methods and applications. Magn Reson Imaging. 1995; 13(3):343–368.

    Article  Google Scholar 

  28. Lawson SW, Parker GA. Intelligent segmentation of industrial radiographic images using neural networks. Proc SPIE Mach Vis Appl Architectures Syst Integration III. SPIE. 1994; 2347:245–255.

    Google Scholar 

  29. Silverman RH, Noetzel AS. Image processing and pattern recognition in ultrasonograms by backpropagation. Neural Networks. 1990; 3(5):593–603.

    Article  Google Scholar 

  30. Oshio K, Singh M. Automatic segmentation of magnetic resonance head images using neural nets. Proc IEEE Nucl Sci Symp. 1990; 1430–1434.

  31. Ozkan M, Dawant BM, Maciunas RJ. Neural-network-based segmentation of multi-modal medical images: a comparative and prospective study. IEEE T Med Imaging, 1993; 12(3):534–544.

    Article  Google Scholar 

  32. Blanz WE, Gish SL. A connectionist classifier architecture applied to image segmentation. Proc 10th Int Conf Pattern Recogn. 1990; 2:272–277.

    Article  Google Scholar 

  33. Babaguchi N, Yamada K, Kise K, Tezuka Y. Connectionist model binarization. Proc 10th Int Conf Pattern Recogn. 1990; 2:51–56.

    Article  Google Scholar 

  34. Hall, LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek JC. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE T Neural Networ. 1992; 3(5):672–682.

    Article  Google Scholar 

  35. Ozkan M, Dawant BM, Maciunas RJ. Neural-network-based segmentation of multi-modal medical images: a comparative and prospective study. IEEE T Med Imaging. 1993; 12(3):534–544.

    Article  Google Scholar 

  36. Phukpattaranont P, Boonyaphiphat P. Segmentation of cancer cells in microscopic images using neural network and mathematical morphology. Proc Int Joint Conf SICE-ICASE. 2006; 2312–2315.

  37. Meftah B, Lezoray O, Lecluse M, Benyettou A. Cell microscopic segmentation with spiking neuron networks. Proc 20th Int Conf Artif Neural Networ. 2010; 117–126.

  38. Rodrigues P, Ferreira M, Monteiro J. Segmentation and classification of leukocytes using neural networks: a generalization direction. 2008; 83:373–396.

    Google Scholar 

  39. Macqueen J. Some methods for classification and analysis of multivariate observations. Proc Fifth Berkeley Symp Math Stat Probab. 1967; 1:281–297.

    MathSciNet  Google Scholar 

  40. Mohapatra S, Patra D. Automated leukemia detection using hausdorff dimension in blood microscopic images. Proc Int Conf Emerg Trends Robot Commun Technol. 2010; 64–68.

  41. Russ JC. The Image Processing Handbook. 5th ed. Taylor and Francis; 2007.

  42. Charrier C, Lebrun G, Lezoray O. Evidential segmentation of microscopic color images with pixel classification posterior probabilities. J Multimedia. 2007; 2(3).

  43. Demirkaya O, Asyali MH, Sahoo PK. Image Processing with MATLAB: applications in Medicine and Biology. Taylor and Francis. 2009.

  44. Robertson AR. The cie 1976 color difference formulae. Color Res Appl. 1977; 2:7–11.

    Google Scholar 

  45. Mohapatra S, Sa PK, Majhi B. Adaptive threshold selection for impulsive noise detection in images using coefficient of variance. Neural Comput Appl. 21(2):281–288.

  46. Haykin S. Neural Networks. 2nd ed. Prentice Hall; 1999.

  47. Patra JC, Pal RN, Chatterji BN, Panda G. Identification of nonlinear dynamic systems using functional link artificial neural networks. IEEE T Syst Man Cyb. 1999; 29(2):254–262.

    Article  Google Scholar 

  48. Patra JC, Panda G, Baliarsingh R. Artificial neural networkbased nonlinearity estimation of pressure sensors. IEEE T Instrum Meas. 1994; 43(6):874–881.

    Article  Google Scholar 

  49. Mohapatra S. Developmant of impulse noise detection schemes for selective filtering. Master’s thesis, National Institute of Technolgy Rourkela. 2008.

  50. Panda S. Color image segmentation using markov random field model. PhD thesis, National Institute of Technolgy Rourkela. 2011.

  51. Sinha N, Ramakrishnan AG. Automation of differential blood count. Proc Conf Convergent Technol Asia Pac Reg. 2003; 2:547–551.

    Article  Google Scholar 

  52. Mohapatra S, Patra D, Kumar K. Blood microscopic image segmentation using rough sets. Proc Int Conf Image Inform Proc. 2011; 1–6.

  53. Tu K, Yu H, Guo Z, Li X. Learnability-based further prediction of gene functions in gene ontology. Genomics. 2004; 84(6):922–928.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrajeet Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohapatra, S., Patra, D., Kumar, S. et al. Lymphocyte image segmentation using functional link neural architecture for acute leukemia detection. Biomed. Eng. Lett. 2, 100–110 (2012). https://doi.org/10.1007/s13534-012-0056-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-012-0056-9

Keywords

Navigation