Skip to main content
Log in

Evaluation of the toxicity of a new series of α-aminophosphonate derivatives in a target (Ephestia Kuehniella) and non-target (Lumbricus rubellus) population

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Object

A new series of ᾳ-aminophosphonate derivatives was evaluated for their toxicity in a target (Ephestia kuehniella) and non-target (Lumbricus rubellus) population, after was synthetized by an immersion ultrasound-assisted method. It is a green chemical approach that focuses on designing industrial products and processes with minimal impact on operator, environmental, and consumer health.

Methods

Firstly, we tested the insecticidal activity of five molecules (BR1, BR2, BR3, BR4, and BR5) in Ephestia larvae compared to Dursban using fumigation, contact, and repulsion. Furthermore, we determined their toxicity in earthworms by measuring mortality rate (TM%), weight, glutathione (GSH), acetylcholine esterase activity (AchE), and glutathione-s-transferase (GST).

Results

The results show that the BR1, BR2, and BR3 molecules have strong insecticidal activity (TM > 50%) by fumigation, moderate to strong activity by contact, and low to very low activity by repulsion. We observed no mortality in worms treated with these derivatives, and weight decreased significantly (P < 0.01) compared to controls. Monitoring of stress biomarker variations revealed inhibition of AchE in Lumbricus ranging from 21 to 40% for all treatments when compared to the marketed pesticide (66%), an increase in GSH levels, and induction of non-significant GST activity, indicating moderate oxidative stress.

Conclusion

All of these findings emphasize the insecticidal activity of these molecules on the target population (Ephestia kuehniella) while ignoring their repellent mode and the significance of the fraction inserted to reduce the toxic impact of these compounds on non-population targets (Lumbricus rubellus).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ali S, Irfan Ullah M, Sajjad A, Shakeel Q, Hussain A (2020) Environmental and health effects of pesticide residues. Sustain Agric Rev 48:311–336. https://doi.org/10.1007/978-3-030-54719-6_8

    Article  Google Scholar 

  2. Haarstad K, Bavor J, Roseth R (2012) Pesticides in greenhouse runoff, soil and plants: a screening. Open Environ Biol Monit J 5:1–13. https://doi.org/10.2174/1875040001205010001

    Article  Google Scholar 

  3. FAO (2020) Pesticides use. https://www.fao.org/faostat/en/#data/RP/visualize

  4. Nowack B (1998) The behavior of phosphonates in wastewater treatment plants of Switzerland. Water Res 32(4):1271–1279. https://doi.org/10.1016/S0043-1354(97)00338-2

    Article  CAS  Google Scholar 

  5. Salasi M, Shahrabi T, Roayaei E, Alifkhazraei M (2007) The electrochemical behaviour of environment-friendly inhibitors of silicate and phosphonate in corrosion control of carbon steel in soft water media. Mater Chem Phys 104(1):183–190. https://doi.org/10.1016/j.matchemphys.2007.03.008

    Article  CAS  Google Scholar 

  6. Francis MD, Russell RG, Fleisch H (1969) Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo. Science 165(3899):1264–1266. https://doi.org/10.1126/science.165.3899.1264

    Article  CAS  PubMed  Google Scholar 

  7. Frederiksen M, Stapleton H, Vorkamp K, Webster T, Sorensen J, Nielsen F, Knudsen L, Sorensen L, Clausen P, Nielsen J (2018) Dermal uptake and percutaneous penetration of organophosphate esters in a human skin ex vivo model. Chemosphere 197:185–192. https://doi.org/10.1016/j.chemosphere.2018.01.032

    Article  CAS  PubMed  Google Scholar 

  8. Burke R, Todd S, Lumsden E, Mullins R, Mamczarz J, Fawcett W, Gullapalli R, Randall W, Pereira E, Albuquerque E (2017) Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms. J Neurochem 142:162–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mladenovi M, Arsi B, Stankovi N, Mihovi N, Ragno R, Regan A, Mili J, Petrovi T, Mici R (2018) The targeted pesticides as acetyl- cholinesterase inhibitors: comprehensive cross-organism molecular modelling studies performed to anticipate the pharmacology of harmfulness to humans in vitro. Molecules 23(9):2192. https://doi.org/10.3390/molecules23092192

    Article  CAS  Google Scholar 

  10. Pearson J, Patel M (2016) The role of oxidative stress in organophosphate and nerve agent toxicity. Ann NY Acad Sci 1378:17–24

    Article  CAS  PubMed  Google Scholar 

  11. Livingstone DR (2003) Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Revue de Medicine Veterinaire 154:427–430

    CAS  Google Scholar 

  12. Carson R (1962) Silent spring. Riverside Press, Cambridge

    Google Scholar 

  13. Amara A (2012) Evaluation of the toxicity of pesticides on four marine trophic levels: microalgae, echinoderm, bivalves and fish. Doctoral thesis in joint supervision between the University of Tunis El-Manar and the University of Western Brittany. https://tel.archives-ouvertes.fr/tel-00795396

  14. Magdelaine C (2013) Pesticides or phytosanitary products. On line: http://www.notreplanete.info/ecologie/alimentation/pesticides.php#. Accessed 07 Oct 2022

  15. Saib A, Berrebbah H, Djebar MR, Berredjem M (2015) Fungitoxic evaluation of new modified Amidophosphonates (ap1, ap2) on the in vitro growth of two fungal strains. Res J Environ Toxicol 9(4):196–203. https://doi.org/10.3923/rjet.2015.196.203

    Article  CAS  Google Scholar 

  16. Rachedi KO, Ouk TS, Bahadi R, Bouzina A, Djouad SE, Bechlem K (2020) Synthesis, DFT and POM analyses of cytotoxicity activity of α-amidophosphonates derivatives: identification of potential antiviral O, O-pharmacophore site. J Mol Struct 1197:196–203. https://doi.org/10.1016/j.molstruc.2019.07.053

    Article  CAS  Google Scholar 

  17. Benbouguerra Kh, Chafaa S, Chafai N, Mehri M, Moumeni O, Hellal A (2018) Synthesis, spectroscopic characterization and a comparative study of the corrosion inhibitive efficiency of an a-aminophosphonate and Schiff base derivatives: experimental and theoretical investigations. J Mol Struct 1157:165–176. https://doi.org/10.1016/j.molstruc.2017.12.049

    Article  CAS  Google Scholar 

  18. Amira A, Aouf Z, K’tir H et al (2021) Recent advances in the synthesis of α-aminophosphonates: a review. ChemistrySelect 6(24):6137–6149. https://doi.org/10.1002/slct.202101360

    Article  CAS  Google Scholar 

  19. Huang J, Chen R (2000) An overview of recent advances on the synthesis and biological activity of α-aminophosphonic acid derivatives. Heteroatom Chem 11(7):480–492. https://doi.org/10.1002/1098-1071(2000)11:7%3C480::AID-HC6%3E3.0.CO;2-J

    Article  CAS  Google Scholar 

  20. Atherton FR, Hassal CH, Lambert RW (1986) Synthesis and structure-activity relationships of antibacterial phosphonopeptides incorporating (1 aminoethyl)phosphonic acid and (aminomethyl)phosphonic acid. Med Chem J 29(1):29–40. https://doi.org/10.1021/jm00151a005

    Article  CAS  Google Scholar 

  21. Bahadi R, Boughoula R, Berredjem M, Bachari Kh, Bouzina A, Bouacida S, Sbartai H, Benalliouche F, Redjemia R (2022) A convenient synthesis, biological activity and X-ray crystallography of novel α-aminophosphonate derivatives. Phosphorus Sulfur Silicon Relat Elem 197(11):1150–1156. https://doi.org/10.1080/10426507.2022.2064859

    Article  CAS  Google Scholar 

  22. Allen MC, Fuhrer W, Tuck B, Wade R, Wood J (1989) Renin inhibitors. Synthesis of transition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond. Med Chem J 32:1652. https://doi.org/10.1021/jm00127a041

    Article  CAS  Google Scholar 

  23. Kuliszewska E, Hanbauer M, Hammerschmidt F (2008) Preparation of α-aminobenzylphosphonic acids with a stereogenic quaternary carbon atom via microscopically conurationally stable α-Aminobenzyllithiums. Chem: A Eur J 14(28):8603–8614

    Article  CAS  Google Scholar 

  24. Bertrand M (2005) Contribution to the assessment of the ecotoxicological and toxicological risk of drinking water protection residues, paris

  25. Huang J, Su Z, Xu Y (2005) The evolution of microbial phosphonate degradative pathways. J Mol Evol 61(5):682–690

    Article  CAS  PubMed  Google Scholar 

  26. Bouziani M (2007) Immoderate use of pesticides: serious health consequences. The guide to medicine and health, Santémaghreb

  27. Cipola C, Lugo G, Sassi C, Belisario A, Nucci MC, Palermo A, Pascarolli M, Nobile M, Raffi GB (1996) A new risque of occupational disease: allergie asthma rhinoconjunctivitis in persons working with beneficial arthropods. Insect Arch Occup Environ Health 68:133–135. https://doi.org/10.1007/BF00381246

    Article  Google Scholar 

  28. Bataille A, Anton M, Mollat F, Bobe M, Bonneau C, Caramaniam MN, Geraut G, Dupas D (1995) Respiratory allergies amongsymptomaticbackers and pastrycooks: initial results of a prevalencestudy. Allerg Immunol (Paris) 27(1):7–10

    CAS  PubMed  Google Scholar 

  29. Payne ND (1966) The differential effects of environnemental factors Upon Mici bracon hebetor and its most Ephestia kuehniella. Biol Bull 65(2):187–205

    Article  Google Scholar 

  30. Abbott WB (1925) A method for competing the effectiveness of an insecticicde. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  31. Ndomo AF, Tapondjou LA, Ngamo LT, Hance T (2008) Insecticidal activities of essential oil of Callistemon viminalis applied as fumigant and powder against two bruchids. J Appl Entomol 134(4):333–341

    Article  Google Scholar 

  32. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  33. Mcdonald LL, Guy RH, Speirs RD (1970) Preliminary evaluation of new candidate materials as toxicants, repellents and attractants against stored product insects. Marketing Research Report No. 882, Agriculture Research Service, US Department of Agric, Washington, p 183

  34. Bouché MB (1972) Earthworms of France: ecology and systematics. INRA Ann Zool Ecol Anim Publ France 72:1–671

    Google Scholar 

  35. Schreck E, Geret F, Gontier L, Treilhou M (2008) Neurotoxic effect and metabolic responses induced by a mixture of six pesticides on the earthworm Aporrectodea caliginosa nocturna. Chemosphere 71(10):1832–1839. https://doi.org/10.1016/j.chemosphere.2008.02.003

    Article  CAS  PubMed  Google Scholar 

  36. Martin NA (1986) Toxicity of pesticides to Allolobophora caliginosa (Oligochaeta: lumbricidae). NZ J Agric Res 29(4):699–706. https://doi.org/10.1080/00288233.1986.10430466

    Article  CAS  Google Scholar 

  37. Ellman G, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–90. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

  38. Weckberker G, Cory JG (1988) Ribonucleotide reductase activity and growth of glutathione-depleted mouse leukemia L1210 cells in vitro. Cancer Lett 40(1988):257–264

    Article  Google Scholar 

  39. Habig WH, Pabst MJ (1974) Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    Article  CAS  PubMed  Google Scholar 

  40. Aissa R, Guezane-Lakoud S, Gali L, Toffano M, Ignaczak A, Adamiak M, Merabet-Khelassi M, Guillot R, Aribi-Zouioueche L (2022) New promising generation of phosphates α-aminophosphonates: design, synthesis, in-vitro biological evaluation and computational study. J Mol Struct 1247(17):131336

    Article  CAS  Google Scholar 

  41. Oniţa N, Şişu I, Penescu M, Purcarea VL, Kurunczi L (2010) Synthesis, characterization and biological activity of some α-aminophosphonates. Farmacia 58(5):531–545

    Google Scholar 

  42. Milan J, Stojiljkovi MP (2006) Current understanding of the application of pyridinium oximes as cholinesterase reactivators in the treatment of organophosphate poisoning. Eur J Pharmacol 553(1–3):10–17. https://doi.org/10.1016/j.ejphar.2006.09.054

    Article  CAS  Google Scholar 

  43. Bocquené G, Galgani F, Walker C (1997) Cholinesterase biomarkers of neurotoxicity. In: Lagadic L, Caquet T, Amiard JC, Ramade F (eds) Biomarkers in Ecotoxicology, fundamental aspects. Masson, Paris

    Google Scholar 

  44. Galgani F, Bocquené G (1998) Molecular biomarkers of exposure of marine organisms to organophosphate and carbamate pesticides. In: Lagadic L, Caquet T, Amiard JC, Ramade F (eds) use of biomarkers for monitoring the quality of the environment. Lavoisier Technical & Documentation, Paris

    Google Scholar 

  45. Rivière J, Fouchecourt M, Walker C (1998) Biomarkers of exposure of birds and small mammals to pollutants. In: Lagadic L, Caquet T, Amiard JC, Ramade F (eds) Use of biomarkers for monitoring environmental quality. Lavoisier Technical & Documentation, Paris, pp 135–163

    Google Scholar 

  46. Lotti M (1995) Cholinesterase inhibition: complexities in interpretation. Clin Chem 41(12):1814–1818. https://doi.org/10.1093/clinchem/41.12.1814

    Article  CAS  PubMed  Google Scholar 

  47. Sweet L, Passino D, Meier P, Omann G (1999) Xenobiotic induced apoptosis: significance and potential application as a general biomarker of response. Biomarkers 4(4):237–253. https://doi.org/10.1080/135475099230778

    Article  CAS  Google Scholar 

  48. Reinecke S, Reinecke A (2007) The impact of organophosphate pesticides in orchards on earthworms in the Western Cape. South Africa Ecotoxicol Environ Saf 66(2):244–251. https://doi.org/10.1016/j.ecoenv.2005.10.006

    Article  CAS  PubMed  Google Scholar 

  49. Yesguer S (2015) Evaluation of the ecotoxicity of certain pesticides on soils using a biotest: case of earthworms. Master’s thesis in science, A.Mira-Bejaia University

  50. Rault M, Collange B, Mazzia C, Capowiez Y (2008) Dynamics of acetylcholinesterase activity recovery in two earthworm species following exposure to ethyl-parathion. Soil Biol Biochem 40(12):3086–3091. https://doi.org/10.1016/j.soilbio.2008.09.010

    Article  CAS  Google Scholar 

  51. Samanta P, Pal S, Mukherjee A, Ghosh A (2014) Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes. Ecotoxicol Environ Saf 107:120–125. https://doi.org/10.1016/j.ecoenv.2014.05.025

    Article  CAS  PubMed  Google Scholar 

  52. Mekahlia MN, Tine S, Menasria T, Amieur H, Salhi H (2016) In vitro biomarker responses of earthworm lumbricus terrestris exposed to herbicide sekator and phosphate fertilizer. Water Air Soil Pollut 227(15):1–8. https://doi.org/10.1007/s11270-015-2712-z

    Article  CAS  Google Scholar 

  53. Lambert O, Pouliquen H, Clergeau P (2005) Impact of cholinesterase-inhibitor insecticides on non-target wildlife: a review of studies relative to terrestrial vertebrates. Revue d’écologie, Terre et Vie 60(1):3–20

    Article  Google Scholar 

  54. Lett PF, Farmer GJ, Beamish FW (1976) Effect of copper on some aspects of the bioenergetics of rainbow trout (Salmo gairdneri). J Fish Board Canada 33(6):1335–1342

    Article  CAS  Google Scholar 

  55. Vandenberg L, Colborn T, Hayes T, Heindel J, Jacobs D, Lee D, Shioda T, Soto A, vom Saal F, Welshons W (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33(3):378–455. https://doi.org/10.1210/er.2011-1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stellin F, Gavinelli F, Stevanato P, Concheri G, Squartini A, Paoletti MG (2018) Effects of different concentrations of glyphosate (Roundup 360®) on earthworms (Octodrilus complanatus, Lumbricus terrestris and Aporrectodea caliginosa) in vineyards in the North-East of Italy. Appl Soil Ecol 123:802–808. https://doi.org/10.1016/j.apsoil.2017.07.028

    Article  Google Scholar 

  57. Akerboom T, Sies H (2017) Glutathione transport and its significance in oxidative stress. In CRC Press Glutathione (1990), pp 45–56

Download references

Acknowledgements

The authors would like to thank the director of the cellular toxicology laboratory, Pr. Berrebbah Houria, for helping us and having all the necessities to carry out this work at our disposal. The Algerian Ministry of Higher Education and Scientific Research supported this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. Corresponding Author: SBARTAI Hana set up the theme of the paper. First author: Boughoula Rahma prepared the material, data collection and analysis. Bahadi Rania and Berredjem Malika carried out the synthesis of molecules. The first author wrote the first draft of the manuscript, and all authors corrected and commented on previous versions.

Corresponding author

Correspondence to Hana Sbartai.

Ethics declarations

Conflict of interest

Rahma Boughoula, Hana Sbartai, Rania Bahadi, Ibtissem Sbartai and Malika Berredjem declare that we have no conflict of interest.

Compliance with ethical standards

This manuscript complies with the ethical rules applicable to this journal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boughoula, R., Sbartai, H., Bahadi, R. et al. Evaluation of the toxicity of a new series of α-aminophosphonate derivatives in a target (Ephestia Kuehniella) and non-target (Lumbricus rubellus) population. Toxicol. Environ. Health Sci. (2024). https://doi.org/10.1007/s13530-024-00215-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13530-024-00215-x

Keywords

Navigation