Skip to main content
Log in

Ameliorative effects of Copper(II) albumin complex against zinc oxide nanoparticles induced oxidative DNA damage in Sprague Dawley rats

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

The present study was carried out to investigate the possible protective role of copper (II) albumin against zinc oxide nanoparticles (ZnONPs) provoked DNA damage and hepatotoxicity in rats.

Methods

Forty adult male Sprague Dawley rats were randomly divided into five groups; Group I: the control group maintained on a regular diet, Group II: received 1 ml/day of milk as the solvent of Cu (II) albumin complex, Group III: received Cu (II) albumin at 0.03 µg/gm, Group IV: exposed to ZnONPs (400 mg/kg/day), and Group V: exposed to 400 mg/kg/day ZnONPs plus Cu (II) albumin. All treatments were administered for 30 days. At the end of the experiment, animals were euthanized for collection of blood and liver samples. DNA damage in blood and liver was evaluated by using comet assay, while hepatotoxicity was evaluated from histopathological changes of hepatic tissue and liver enzymes (ALT and AST). The oxidative status parameters including nitric oxide (NO), glutathione peroxidase, malondialdehyde (MDA), and total antioxidant capacity (TAC) were also measured.

Results

The results showed that ZnONPs induced oxidative stress through a significant increase in MDA and NO activities, a significant decrease in TAC, and slight decrease in glutathione peroxidase. Significant DNA damage, a significant increase in AST, and a slight increase in ALT were accompanied by histological changes in the liver ZnONPs exposed group. Concurrent Cu (II) albumin supplement to ZnONPs-treated rats in Group IV reversed most of the histopathological changes and DNA damage, significantly lowered ALT and AST levels as well as MDA and NO, and elevated the TAC and GPx.

Conclusion

Based on these results, it can be concluded that Cu (II) albumin effectively protects against ZnONPs-induced hepatic dysfunction and DNA damage in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data are available if requested by the journal.

References

  1. Abdel-Magiud DS, Nassar AY, Shatat AR, Mohamed AS (2019) Radical scavenging activities of albumin-copper complex against bromobenzene induced hepatotoxicity. J Clin Toxicol 9(1):1–10

    Article  Google Scholar 

  2. Abo-Hiemad HM, Nassar AY, Shatat AR, Mohamed MA, Soliman M, Abdelrady YA, Sayed AM (2022) Protective effect of copper II-albumin complex against aflatoxin B1- induced hepatocellular toxicity: the impact of Nrf2, PPAR-γ, and NF-kB in these protective effects. J Food Biochem 46(11):e14160. https://doi.org/10.1111/jfbc.14160

    Article  CAS  PubMed  Google Scholar 

  3. Aboulhoda BE, Abdeltawab DA, Rashed LA, Abd Alla MF, Yassa HD (2020) Hepatotoxic effect of oral zinc oxide nanoparticles and the ameliorating role of selenium in rats: a histological, immunohistochemical and molecular study. Tissue Cell 67:101441

    Article  CAS  PubMed  Google Scholar 

  4. Alaraby M, Annangi B, Hernández A, Creus A, Marcos R (2015) A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model. J Hazard Mater 296:166–174

    Article  CAS  PubMed  Google Scholar 

  5. Almansour MI, Alferah MA, Shraideh ZA, Jarrar BM (2017) Zinc oxide nanoparticles hepatotoxicity: histological and histochemical study. Environ Toxicol Pharmacol 51:124–130

    Article  CAS  PubMed  Google Scholar 

  6. Attia H, Nounou H, Shalaby M (2018) Zinc oxide nanoparticles induced oxidative DNA damage, inflammation and apoptosis in rat’s brain after oral exposure. Toxins 6(2), Article 2

  7. Baquial JGL, Sorenson JRJ (1995) Down-regulation of NADPH-diaphorase (nitric oxide synthase) may account for the pharmacological activities of Cu(II)2(3,5-diisopropylsalicylate)4. J Inorg Biochem 60:133–148

    Article  CAS  PubMed  Google Scholar 

  8. Ben-Slama I, Mrad I, Rihane N, Mir LE, Sakly M et al (2015) Sub-acute oral toxicity of zinc oxide nanoparticles in male rats. J Nanomed Nanotechnol 6:284

    Google Scholar 

  9. Berger MM (2006) Antioxidant micronutrients in major trauma and burns: evidence and practice. Nutr Clin Pract 21(5):438–449

    Article  PubMed  Google Scholar 

  10. Bogiswariy S, Jegathambigai R, Marimuthu K (2008) Effect of acute exposure of cadmium chloride in the morphology of the liver and kidney of mice. In: Proceedings of the international conference on environmental research and technology (ICERT), pp 28–30

  11. Buchtík R, Trávníček Z, Vančo J (2012) In vitro cytotoxicity, DNA cleavage, and SOD-mimic activity of copper(II) mixed-ligand quinolinonato complexes. J Inorg Biochem 116:163–171

    Article  PubMed  Google Scholar 

  12. Bukhari B, Memon S, Tahir MM, Bhanger MI (2009) Synthesis, characterization and antioxidant activity copper–quercetin complex. Spectrochim Acta Part A Mol Biomol Spectrosc 71(5):1901–1906

    Article  ADS  Google Scholar 

  13. Carmona ER, Inostroza-Blancheteau C, Rubio L, Marcos R (2016) Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Toxicol Ind Health 32(12):1987–2001

    Article  CAS  PubMed  Google Scholar 

  14. Chupani L, Niksirat H, Lünsmann V, Haange S-B, von Bergen M, Jehmlich N, Zuskova E (2018) Insight into the modulation of the intestinal proteome of juvenile common carp (Cyprinus carpio L.) after dietary exposure to ZnO nanoparticles. Sci Total Environ 613–614:62–71

    Article  ADS  PubMed  Google Scholar 

  15. Collins AR, Dobson VL, Dušinská M, Kennedy G, Štětina R (1997) The comet assay: what can it really tell us? Mutat Res Fundam Mol Mech Mutagen 375(2):183–193

    Article  CAS  Google Scholar 

  16. Dumitru I, Ene CD, Ofiteru AM, Paraschivescu C, Madalan AM, Baciu I, Farcasanu IC (2012) Identification of [CuCl(acac)(tmed)], a copper(II) complex with mixed ligands, as a modulator of Cu, Zn superoxide dismutase (Sod1p) activity in yeast. J Biol Inorg Chem 17(6):961–974

    Article  CAS  PubMed  Google Scholar 

  17. Duncan C, White AR (2012) Copper complexes as therapeutic agents. Metallomics 4(2):127–138. https://doi.org/10.1039/c2mt00174h

    Article  CAS  PubMed  Google Scholar 

  18. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis, and autophagy. Curr Opin Cell Biol 16(6):663–669

    Article  CAS  PubMed  Google Scholar 

  19. El-Saadani MAM (2004) A combination therapy with copper nicotinate complex reduces the adverse effects of 5-fluorouracil on patients with hepatocellular carcinoma. J Exp Therapeut Oncol 4:19–24

    CAS  Google Scholar 

  20. El-wafaey DI, Nafea OE, Faruk EM (2022) Naringenin alleviates hepatic injury in zinc oxide nanoparticles exposed rats: impact on oxido-inflammatory stress and apoptotic cell death. Toxicol Mech Methods 32(1):58–66

    Article  CAS  PubMed  Google Scholar 

  21. Esmaeillou M, Moharamnejad M, Hsankhani R, Tehrani AA, Maadi H (2013) Toxicity of ZnO nanoparticles in healthy adult mice. Environ Toxicol Pharmacol 35(1):67–71

    Article  CAS  PubMed  Google Scholar 

  22. Fathi M, Haydari M, Tanha T (2016) Effects of zinc oxide nanoparticles on antioxidant status, serum enzymes activities, biochemical parameters and performance in broiler chickens. J Livestock Sci Technol 4(2):7–13

    Google Scholar 

  23. Friedman RB, Young DS (1989) Effects of disease on clinicallaboratory tests. 4th ed. AACC Press, Washington, D.C.

  24. Ghareeb OA (2021) Toxicopathological effects of zinc oxide nanoparticles on the liver function and preventive role of silymarin in vivo. Indian J Forensic Med Toxicol 15(2):3212–3217

    Article  CAS  Google Scholar 

  25. Giordo R, Nasrallah GK, Al-Jamal O, Paliogiannis P, Pintus G (2020) Resveratrol inhibits oxidative stress and prevents mitochondrial damage induced by zinc oxide nanoparticles in zebrafish (Danio rerio). Int J Mol Sci 21(11), Article 11

  26. Gökakın AK, Atabey M, Deveci K, Sancakdar E, Tuzcu M, Duger C, Topcu O (2014) The effects of sildenafil in liver and kidney injury in a rat model of severe scald burn: a biochemical and histopathological study. Ulus Travma Acil Cerrahi Derg 20(5):319–327

    Article  PubMed  Google Scholar 

  27. Guo Z, Luo Y, Zhang P, Chetwynd AJ, Qunhui Xie H, AbdolahpurMonikh F, Tao W, Xie C, Liu Y, Xu L, Zhang Z, Valsami-Jones E, Lynch I, Zhao B (2020) Deciphering the particle specific effects on metabolism in rat liver and plasma from ZnO nanoparticles versus ionic Zn exposure. Environ Int 136:105437

    Article  CAS  PubMed  Google Scholar 

  28. Hassan ME, Hassan RR, Diab KA, El-Nekeety AA, Hassan NS, Abdel-Wahhab MA (2021) Nanoencapsulation of thyme essential oil: a new avenue to enhance its protective role against oxidative stress and cytotoxicity of zinc oxide nanoparticles in rats. Environ Sci Pollut Res 28(37):52046–52063

    Article  CAS  Google Scholar 

  29. Hegazy AA, Ahmed MM, Shehata M (2018) Changes in rats’ liver structure induced by zinc oxide nanoparticles and the possible protective role of vitamin E. Int J Hum Anat 1(3):1–16

    Article  Google Scholar 

  30. Hjiri M, Aida MS, Neri G (2019) NO2 selective sensor based on αFe2O3 nanoparticles synthesized via hydrothermal technique. Sensors 19(1), Article 1

  31. Hosseini SM, Amani R, Moshrefi AH, Razavimehr SV, Aghajanikhah MH, Sokouti Z (2020) Chronic zinc oxide nanoparticles exposure produces hepatic and pancreatic impairment in female rats. Iranian J Toxicol 14(3):145–154

    Article  CAS  Google Scholar 

  32. Huang C-C, Aronstam RS, Chen D-R, Huang Y-W (2010) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro 24(1):45–55. https://doi.org/10.1016/j.tiv.2009.09.007

    Article  CAS  PubMed  Google Scholar 

  33. Hussein MMA, Ali HA, Saadeldin IM, Ahmed MM (2016) Querectin alleviates zinc oxide nanoreprotoxicity in male albino rats. J Biochem Mol Toxicol 30(10):489–496

    Article  CAS  PubMed  Google Scholar 

  34. Iakovidis I, Delimaris I, Piperakis SM (2011) Copper and its complexes in medicine: a biochemical approach. Mol Biol Int 2011:1–13

    Article  Google Scholar 

  35. Jeon Y-M, Kim W-J, Lee M-Y (2013) Studies on liver damage induced by nanosized-titanium dioxide in mouse. J Environ Biol 34(2):283–287

    PubMed  Google Scholar 

  36. Johar D, Roth JC, Bay GH, Walker JN, Kroczak TJ, Los M (2004) Inflammatory response, reactive oxygen species, programmed (necrotic-like and apoptotic) cell death and cancer. Rocz Akad Med Bialymst 1995(49):31–39

    Google Scholar 

  37. Joseph J, Nagashri K, Rani GAB (2013) Synthesis, characterization and antimicrobial activities of copper complexes derived from 4aminoantipyrine derivatives. J Saudi Chem Soc 17(3):285–294

    Article  CAS  Google Scholar 

  38. Kang DH (2002) Oxidative stress, DNA damage, and breast cancer. AACN Adv Crit Care 13(4):540–549

    Google Scholar 

  39. Kei S (1978) Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta 90(1):37–43

    Article  Google Scholar 

  40. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    Article  CAS  Google Scholar 

  41. Kim I, Viswanathan K, Kasi G, Thanakkasaranee S, Sadeghi K, Seo J (2020) ZnO nanostructures in active antibacterial food packaging: preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Rev Int 0(0):1–29

    Google Scholar 

  42. Klotz L-O, Kröncke K-D, Buchczyk DP, Sies H (2003) Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J Nutr 133(5):1448S-1451S

    Article  CAS  PubMed  Google Scholar 

  43. Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V (2001) Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54(5):356–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumar J, Mitra MD, Hussain A, Kaul G (2019) Exploration of immunomodulatory and protective effect of Withania somnifera on trace metal oxide (zinc oxide nanoparticles) induced toxicity in Balb/c mice. Mol Biol Rep 46(2):2447–2459

    Article  CAS  PubMed  Google Scholar 

  45. Kwon JY, Lee SY, Koedrith P, Lee JY, Kim K-M, Oh J-M, Yang SI, Kim M-K, Lee JK, Jeong J, Maeng EH, Lee BJ, Seo YR (2014) Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests. Mutat Res Genet Toxicol Environ Mutagen 761:1–9

    Article  CAS  PubMed  Google Scholar 

  46. Landsiedel R, Ma-Hock L, Van Ravenzwaay B, Schulz M, Wiench K, Champ S, Schulte S, Wohlleben W, Oesch F (2010) Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations. Nanotoxicology 4(4):364–381

    Article  CAS  PubMed  Google Scholar 

  47. Liao C, Jin Y, Li Y, Tjong SC (2020) Interactions of zinc oxide nanostructures with mammalian cells: cytotoxicity and photocatalytic toxicity. Int J Mol Sci 21(17), Article 17

  48. Mansouri E, Khorsandi L, Orazizadeh M, Jozi Z (2015) Dose-dependent hepatotoxicity effects of zinc oxide nanoparticles. Nanomed J 2(4):273–282

    CAS  Google Scholar 

  49. Mir AH, Qamar A, Qadir I, Naqvi AH, Begum R (2020) Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their effects on immuno-competent cells. Sci Rep 10(1):1–14

    Article  Google Scholar 

  50. Moatamed ER, Hussein AA, El-desoky MM, Khayat ZE (2019) Comparative study of zinc oxide nanoparticles and its bulk form on liver function of Wistar rat. Toxicol Ind Health 35(10):627–637

    Article  CAS  PubMed  Google Scholar 

  51. Mohamed AO, Nassar AY, Mandour MAM, Saad Eldien HM, Mohammed GME (2012) Effects of Copper (II) albumin complex on thermal skin burn. Bull Egypt Soc Physiol Sci 32(2):12

    Google Scholar 

  52. Montgomery HACDJ, Dymock JF (1961) Determination of nitrite in water. Analyst 86(102):414

    CAS  Google Scholar 

  53. Mukherjee S, Sarathi Mukherjee P (2013) Cu II-azide polynuclear complexes of Cu4 building clusters with Schiff-base co-ligands: synthesis, structures, magnetic behavior and DFT studies. Dalton Trans 42(11):4019–4030

    Article  CAS  PubMed  Google Scholar 

  54. Neyrinck A (2004) Modulation of Kupffer cell activity: physio-pathological consequences on hepatic metabolism. Bull Mem Acad R Med Belg 159(5–6):358–366

    CAS  PubMed  Google Scholar 

  55. Oligny LL, Lough J (1992) Hepatic sinusoidal ectasia. Hum Pathol 23(8):953–956

    Article  CAS  PubMed  Google Scholar 

  56. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169

    CAS  PubMed  Google Scholar 

  57. Palanimuthu D, Shinde SV, Somasundaram K, Samuelson AG (2013) In vitro and in vivo anticancer activity of copper bis(thiosemicarbazone) complexes. J Med Chem 56(3):722–734

    Article  CAS  PubMed  Google Scholar 

  58. Pasupuleti S, Alapati S, Ganapathy S, Anumolu G, Pully NR, Prakhya BM (2012) Toxicity of zinc oxide nanoparticles through oral route. Toxicol Ind Health 28(8):675–686

    Article  CAS  PubMed  Google Scholar 

  59. Philips N, Hwang H, Chauhan S, Leonardi D, Gonzalez S (2010) Stimulation of cell proliferation and expression of matrixmetalloproteinase-1 and interluekin-8 genes in dermal fibroblasts by copper. Connect Tissue Res 51(3):224–229

    Article  CAS  PubMed  Google Scholar 

  60. Ramaiah SK (2007) A toxicologist guide to the diagnostic interpretation of hepatic biochemical parameters. Food Chem Toxicol 45:1551–1557

    Article  CAS  PubMed  Google Scholar 

  61. Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, Danscher G (2007) Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol 4(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  62. Salama RHM, Nassar AYA, Nafady AAM, Mohamed HHT (2007) A novel therapeutic drug (copper nicotinic acid complex) for non-alcoholic fatty liver. Liver Int 27:454–464

    Article  CAS  PubMed  Google Scholar 

  63. Sasaki YF, Izumiyama F, Nishidate E, Matsusaka N, Tsuda S (1997) Detection of rodent liver carcinogen genotoxicity by the alkaline single-cell gel electrophoresis (Comet) assay in multiple mouse organs (liver, lung, spleen, kidney, and bone marrow)1This paper is dedicated to the memory of the late Prof. Kiyosi Tutikawa, National Institute of Genetics, Mishima, Japan.1. Mutat Res Genet Toxicol Environ Mutagen 391(3):201–214

    Article  CAS  Google Scholar 

  64. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. WIREs Nanomed Nanobiotechnol 2(5):544–568

    Article  CAS  Google Scholar 

  65. Sharma V, Singh P, Pandey AK, Dhawan A (2012) Induction of oxidative stress, DNA damage and apoptosis in mouse liver after subacute oral exposure to zinc oxide nanoparticles. Mut Res Genet Toxicol Environ Mutagen 745(1):84–91

    Article  CAS  Google Scholar 

  66. Shatat AR, Eldien HMS, Nassar MY, Mohamed AO, Hussein AHM, El-Adasy A-BA, Khames AA, Nassar AY (2013) Protective effects of copper (I)-nicotinate complex against aflatoxicosis. Open Toxicol J 6(1):1–10

    Article  CAS  Google Scholar 

  67. Singh SP, Lars B, Luca V, Jian C, Falck JR, Attallah K et al (2016) Downregulation of PGC-1α prevents the beneficial effect of EET-heme oxygenase-1 on mitochondrial integrity and associated metabolic function in obese mice. J Nutr Metab 2016:1–15. https://doi.org/10.1155/2016/9039754

    Article  CAS  Google Scholar 

  68. Spaggiari D, Geiser L, Daali Y, Rudaz S (2014) A cocktail approach for assessing the in vitro activity of human cytochrome P450s: an overview of current methodologies. J Pharm Biomed Anal 101:221–237

    Article  CAS  PubMed  Google Scholar 

  69. Surekha P, Kishore AS, Srinivas A, Selvam G, Goparaju A, Reddy PN, Murthy PB (2012) Repeated dose dermal toxicity study of nano zinc oxide with Sprague-Dawley rats. Cutan Ocul Toxicol 31(1):26–32

    Article  CAS  PubMed  Google Scholar 

  70. Suvarna KS, Layton C, Bancroft JD (2018) Bancroft’s theory and practice of histological techniques E-Book. 7th ed. Elsevier Health Sciences, p 75–100

  71. Syama S, Sreekanth PJ, Varma HK, Mohanan PV (2014) Zinc oxide nanoparticles induced oxidative stress in mouse bone marrow mesenchymal stem cells. Toxicol Mech Methods 24(9):644–653

    Article  CAS  PubMed  Google Scholar 

  72. Tang H-Q, Xu M, Rong Q, Jin R-W, Liu Q-J, Li Y-L (2016) The effect of ZnO nanoparticles on liver function in rats. Int J Nanomed 11:4275–4285

    Article  CAS  Google Scholar 

  73. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221

    Article  CAS  PubMed  Google Scholar 

  74. Tuck MK, Chan DW, Chia D, Godwin AK, Grizzle WE, Krueger KE, Brenner DE (2009) Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group. J Proteome Res 8(1):113–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Valentini X, Rugira P, Frau A, Tagliatti V, Conotte R, Laurent S et al (2019) Hepatic and renal toxicity induced by TiO2 nanoparticles in rats: a morphological and metabonomic study. J Toxicol 2019:5767012. https://doi.org/10.1155/2019/5767012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vozarova B, Stefan N, Lindsay RS, Saremi A, Pratley RE, Bogardus C, Tataranni PA (2002) High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 51(6):1889–1895

    Article  CAS  PubMed  Google Scholar 

  77. Wang B, Feng W, Wang M et al (2008) Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276. https://doi.org/10.1007/s11051-007-9245-3

    Article  CAS  Google Scholar 

  78. Wang L, Xu H, Qiu Y, Liu X, Huang W, Yan N, Qu Z (2020) Utilization of Ag nanoparticles anchored in covalent organic frameworks for mercury removal from acidic waste water. J Hazard Mater 389:121824

    Article  CAS  PubMed  Google Scholar 

  79. Weder JE, Dillon CT, Hambley TW, Kennedy BJ, Lay PA, Biffin JR, Regtop HL, Davies NM (2002) Copper complexes of nonsteroidal anti-inflammatory drugs: an opportunity yet to be realized. Coord Chem Rev 232(1):95–126

    Article  CAS  Google Scholar 

  80. Yahya RAM, Azab AE, Shkal KEM, Jm J (2019) Hepatotoxicity induced by copper oxide and zinc oxide nanoparticles and their mixtures in male albino rats. East Afr Sch J Med Sci 2:11

    Google Scholar 

  81. Yao Y, Zang Y, Qu J, Tang M, Zhang T (2019) The toxicity of metallic nanoparticles on liver: the subcellular damages, mechanisms, and outcomes. Int J Nanomed 14:8787–8804

    Article  CAS  Google Scholar 

  82. Yakubu OE, Olawale O, Arowora KA et al (2017) Biochemical changes in haematological and liver function parameters in intoxicated male albino rats treated with hymenocardia acida leaves ethanolic extract. Insights Biomed 2(2):10

    Article  Google Scholar 

  83. Yousef MI, Mutar TF, Kamel MAE-N (2019) Hepato-renal toxicity of oral sub-chronic exposure to aluminum oxide and/or zinc oxide nanoparticles in rats. Toxicol Rep 6:336–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AMA was involved in preparation of the protocol, performed the experiment, collection of samples, statistical analysis, and writing the article. HF contributed to preparation of the protocol, writing, and revision of the manuscript. DY was involved in comet assay analysis, writing and revision of the manuscript, data analysis, and interpretation of results. MFA contributed to sample collection and preparation for histological examination, photographing, and interpretation of results. AYN was involved in preparation of Copper (II) Albumin Complex. DA contributed to data analysis, preparation, and revision of the manuscript.

Corresponding author

Correspondence to Doha Yahia.

Ethics declarations

Conflict of interest

Aya M. Abdelnaem, Hala Fathy, Doha Yahia, Marwa F. Ali, Ahmed Y. Nassar, Doaa Almaz declare that they have no conflict of interest.

Consent to participate

All authors participated in the preparation of the current study.

Consent to publish

All authors agree to publish this article.

Ethical approval

The study protocol was approved by the ethical committee of the Faculty of Medicine, Assiut University, Egypt (No. 17101068,4-2020).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelnaem, A.M., Fathy, H., Yahia, D. et al. Ameliorative effects of Copper(II) albumin complex against zinc oxide nanoparticles induced oxidative DNA damage in Sprague Dawley rats. Toxicol. Environ. Health Sci. (2024). https://doi.org/10.1007/s13530-024-00208-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13530-024-00208-w

Keywords

Navigation