Skip to main content
Log in

Influence of arsenic exposure and TGF-β gene single nucleotide polymorphisms (gene-environment interaction) on cardiovascular risk biomarkers levels in Mexican people from San Luis Potosi, Mexico

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

Cardiovascular diseases (CVD) are the primary cause of death worldwide. Therefore, this investigation aimed to evaluate the effect of arsenic exposure and genetic polymorphism (rs1800469) on cardiovascular risk biomarkers levels in a Mexican adult population.

Methods

Then, a cross-sectional study was completed, including 155 adults. Urinary arsenic (UAs) levels were analyzed as an exposure biomarker, and assessed cardiovascular risk biomarkers were: serum ADMA and FABP4 concentrations and atherogenic indices (Castelli risk index and atherogenic index of plasma). Gentrification of TGF-β C509T polymorphism (rs1800469) was determined by real-time polymerase chain reaction (PCR) using TaqMan probes.

Results

UAs levels ranged from 11.5 to 175 µg/g creatinine. The allele frequency for TGF-β C509T polymorphism was 0.37 and 0.63 for the C and T alleles, respectively. Mean serum ADMA and FABP4 levels were 1.35 ± 0.35 µmol/L and 22.0 ± 9.50 ng/mL, respectively. Also, statistically significant associations (p < 0.05) were detected between the exposure biomarker (UAs) and the cardiovascular risk biomarkers (ADMA and FABP4). Similarly, a strong relationship was detected between the TGF-β C509T polymorphism and assessed cardiovascular risk biomarkers (ADMA and FABP4). In addition, a gene-environmental interaction was found.

Conclusion

Our findings suggest a gene-environment interaction with an enhanced effect on CVD biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ohishi M, Kubozono T, Higuchi K, Akasaki Y (2021) Hypertension, cardiovascular disease, and nocturia: a systematic review of the pathophysiological mechanisms. Hypertens Res 44:733–739

    Article  CAS  PubMed  Google Scholar 

  2. Nuvolone D, Stoppa G, Petri D, Voller F (2023) Long-term exposure to low-level arsenic in drinking water is associated with cause-specific mortality and hospitalization in the Mt. Amiata area (Tuscany, Italy). BMC Public Health. https://doi.org/10.1186/s12889-022-14818-x

    Book  Google Scholar 

  3. Fernández-Macias JC, Ochoa-Martínez ÁC, Orta-García ST, Varela-Silva JA, Pérez-Maldonado IN (2020) Probabilistic human health risk assessment associated with fluoride and arsenic co-occurrence in drinking water from the metropolitan area of San Luis Potosí, Mexico. Environ Monit Assess. https://doi.org/10.1007/s10661-020-08675-7

    Article  PubMed  Google Scholar 

  4. San Mauro-Martín I, de la Calle-de la Rosa L, Sanz-Rojo S, Garicano-Vilar E, Ciudad-Cabañas MJ, Collado-Yurrita L (2016) Enfoque genómico en la enfermedad cardiovascular. Nutr Hosp 33:148–155

    Google Scholar 

  5. Morris DR, Moxon JV, Biros E, Krishna SM, Golledge J (2012) Meta-analysis of the association between transforming growth factor-beta polymorphisms and complications of coronary heart disease. PLoS ONE 7:e37878

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Peng X-Q, Cheng F, Zhou L (2023) Association between transforming growth factor-β1 polymorphisms and ischemic stroke susceptibility: a meta-analysis. Clin Appl Thromb Hemost 29:10760296231166666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cambien F, Ricard S, Troesch A, Mallet C, Générénaz L, Evans A, Arveiler D, Luc G, Ruidavets J-B, Poirier O (1996) Polymorphisms of the transforming growth factor-β1 gene in relation to myocardial infarction and blood pressure. Hypertension 28:881–887

    Article  CAS  PubMed  Google Scholar 

  8. Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, Carter ND, Specter TD (1999) Genetic control of the circulating concentration of transforming growth factor type β1. Hum Mol Genet 8:93–97

    Article  CAS  PubMed  Google Scholar 

  9. Awad MR, El-Gamel A, Hasleton P, Turner DM, Sinnott PJ, Hutchinson IV (1998) Genotypic variation in the transforming growth factor-β1 GENE: association with transforming growth factor-β1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation 66:1014–1020

    Article  CAS  PubMed  Google Scholar 

  10. Mooney RE, Linden GJ, Winning L, Linden K, Kee F, McKeown PP, Woodside JV, Patterson CC, McKay GJ (2022) Association of TGFB1 rs1800469 and BCMO1 rs6564851 with coronary heart disease and IL1B rs16944 with all-cause mortality in men from the Northern Ireland PRIME study. PLoS ONE 17:e0273333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. WHO (2014) Global status report on noncommunicable diseases 2014. World Health, p 176

    Google Scholar 

  12. Fernández-Macías JC, Ochoa-Martínez AC, Varela-Silva JA, Pérez-Maldonado IN (2019) Atherogenic index of plasma: novel predictive biomarker for cardiovascular illnesses. Arch Med Res. https://doi.org/10.1016/j.arcmed.2019.08.009

    Article  PubMed  Google Scholar 

  13. Rodríguez-Calvo R, Granado-Casas M, Pérez-Montes de Oca A et al (2023) Fatty acid binding proteins 3 and 4 predict both all-cause and cardiovascular mortality in subjects with chronic heart failure and type 2 diabetes mellitus. Antioxidants 12:645

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cao Q, Yu S, Xiong W, Li Y, Li H, Li J, Li F (2018) Waist-hip ratio as a predictor of myocardial infarction risk: a systematic review and meta-analysis. Medicine 97:30

    Article  Google Scholar 

  15. Barquera S, Campos-Nonato I, Hernández-Barrera L, Pedroza-Tobías A, Rivera-Dommarco JA (2013) Prevalence of obesity in Mexican adults, ensanut 2012. Salud Publica Mex 55:151–160

    Article  Google Scholar 

  16. James Pa, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Ogedegbe O, Smith SC, Svetkey LP, Taler SJ, Townsend RR, Wright JT, Narva AS, Ortiz E (2013) 2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults. Jama 1097:1–14. https://doi.org/10.1001/jama.2013.284427

  17. Iii aTP, Quick GA, Reference D (2001) ATP III Guidelines At-A-Glance Quick Desk Reference. Natl Institutes Heal 329:211. https://doi.org/10.1016/j.bbrc.2005.02.046

    Article  CAS  Google Scholar 

  18. Norma Oficial Mexicana NOM-047-SSA1-2011 (2012) NOM-047-SSA1-2011. Salud ambiental-indices biologicos de exposicion para el personal ocupacionalmente expuesto a sustancias Quimicas

  19. Centers for Disease Control and Prevention (CDC) (2005) Morbidity and mortality weekly report case definitions for chemical poisoning

  20. NHANES IV (2009) Fourth national report on human exposure to environmental chemicals. Department of Health and Human Services Centers for Disease Control and Prevention, Atlanta, Georgia

  21. Saoudi A, Zeghnoun A, Bidondo M-L, Garnier R, Cirimele V, Persoons R, Fréry N (2012) Urinary arsenic levels in the French adult population: The French National Nutrition and Health Study, 2006–2007. Sci Total Environ 433:206–215

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Sánchez-Rodríguez BL, Castillo Maldonado I, Pedroza D, Delgadillo Guzmán D, Soto-Jiménez M (2022) Association of obesity, diabetes, and hypertension with arsenic in drinking water: a case-control study in the CERHA region in north-central Mexico. https://doi.org/10.21203/rs.3.rs-1804644/v1

  23. Gamboa-Loira B, Cebrián ME, López-Carrillo L (2020) Arsenic exposure in northern Mexican women. Salud Publica Mex 62:262–269

    Article  PubMed  Google Scholar 

  24. Graffelman J, Weir BS (2016) Testing for Hardy-Weinberg equilibrium at biallelic genetic markers on the X chromosome. Heredity (Edinb) 116:558–568

    Article  CAS  PubMed  Google Scholar 

  25. Budi EH, Duan D, Derynck R (2017) Transforming growth factor-β receptors and smads: regulatory complexity and functional versatility. Trends Cell Biol 27:658–672

    Article  CAS  PubMed  Google Scholar 

  26. Kathiresan S, Srivastava D (2012) Genetics of human cardiovascular disease. Cell 148:1242–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Frangogiannis NG (2022) Transforming growth factor-β in myocardial disease. Nat Rev Cardiol 19:435–455

    Article  CAS  PubMed  Google Scholar 

  28. Chen P-Y, Qin L, Li G et al (2019) Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nat Metab 1:912–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar P, Misra S, Kumar A, Faruq M, Shakya S, Vardhan G, Vivekanandhan S, Srivastava AK, Prasad K (2017) Transforming growth factor-β1 (C509T, G800A, and T869C) gene polymorphisms and risk of ischemic stroke in North Indian population: a hospital-based case-control study. Ann Indian Acad Neurol 20:5

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koch W, Hoppmann P, Mueller JC, Schömig A, Kastrati A (2006) Association of transforming growth factor-β1 gene polymorphisms with myocardial infarction in patients with angiographically proven coronary heart disease. Arterioscler Thromb Vasc Biol 26:1114–1119

    Article  CAS  PubMed  Google Scholar 

  31. Peng Z, Zhan L, Chen S, Xu E (2011) Association of transforming growth factor-β1 gene C-509T and T869C polymorphisms with atherosclerotic cerebral infarction in the Chinese: a case-control study. Lipids Health Dis 10:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leong T, Zylberstein D, Graham I, Lissner L, Ward D, Fogarty J, Bengtsson C, Björkelund C, Thelle D (2008) Asymmetric dimethylarginine independently predicts fatal and nonfatal myocardial infarction and stroke in women: 24-Year follow-up of the population study of women in Gothenburg. Arterioscler Thromb Vasc Biol 28:961–967

    Article  CAS  PubMed  Google Scholar 

  33. Takagi W, Miyoshi T, Doi M, Okawa K, Nosaka K, Nishibe T, Matsuo N, Hirohata S, Ito H (2017) Circulating adipocyte fatty acid-binding protein is a predictor of cardiovascular events in patients with stable angina undergoing percutaneous coronary intervention. BMC Cardiovasc Disord 17:258

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sibal L, Agarwal SC, Home PD, Boger RH (2010) The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr Cardiol Rev 6:82–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Avcı E, Karabulut A, Alp AG, Baba B, Bilgi C (2020) Crucial markers showing the risk of coronary artery disease in obesity: ADMA and neopterin. J Med Biochem 39:452–459

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zaciragic A, Dervisevic A, Avdagic N, Babic N, Valjevac A, Lepara O, Huskic J (2022) The impact of type 2 diabetes duration on serum asymmetric dimethylarginine and C-reactive protein concentration in Bosnian patients. Endocr Regul 56:271–278

    Article  PubMed  Google Scholar 

  37. Gamil S, Erdmann J, Schwedhelm E, Bakheit KH, Abdalrahman IBB, Mohamed AO (2020) Increased serum levels of asymmetric dimethylarginine and symmetric dimethylarginine and decreased levels of arginine in sudanese patients with essential hypertension. Kidney Blood Press Res 45:727–736

    Article  CAS  PubMed  Google Scholar 

  38. Gąsecka A, Szwed P, Jasińska K et al (2021) Symmetric dimethylarginine is altered in patients after myocardial infarction and predicts adverse outcomes. J Inflamm Res 14:3797–3808

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rodríguez-Calvo R, Girona J, Alegret JM, Bosquet A, Ibarretxe D, Masana L (2017) Role of the fatty acid-binding protein 4 in heart failure and cardiovascular disease. J Endocrinol 233:R173–R184

    Article  PubMed  Google Scholar 

  40. Yeung DCY, Xu A, Cheung CWS, Wat NMS, Yau MH, Fong CHY, Chau MT, Lam KSL (2007) Serum adipocyte fatty acid-binding protein levels were independently associated with carotid atherosclerosis. Arterioscler Thromb Vasc Biol 27:1796–1802

    Article  CAS  PubMed  Google Scholar 

  41. Ota H, Furuhashi M, Ishimura S et al (2012) Elevation of fatty acid-binding protein 4 is predisposed by family history of hypertension and contributes to blood pressure elevation. Am J Hypertens 25:1124–1130

    Article  CAS  PubMed  Google Scholar 

  42. Kajiya M, Miyoshi T, Doi M et al (2013) Serum adipocyte fatty acid-binding protein is independently associated with complex coronary lesions in patients with stable coronary artery disease. Heart Vessels 28:696–703

    Article  PubMed  Google Scholar 

  43. Abid H, Abid Z, Abid S (2021) Atherogenic indices in clinical practice and biomedical research: a short review. Baghdad J Biochem Appl Biol Sci 2:60–70

    Article  CAS  Google Scholar 

  44. Kavitha S, Sujatha R (2017) Atherogenic indices in stroke patients: a retrospective study. Iran J Neurol 16(2):78

    PubMed  PubMed Central  Google Scholar 

  45. Niroumand S, Khajedaluee M, Khadem-Rezaiyan M, Abrishami M, Juya M, Khodaee G, Dadgarmoghaddam M (2015) Atherogenic index of plasma (AIP): a marker of cardiovascular disease. Med J Islam Repub Iran 29:240

    PubMed  PubMed Central  Google Scholar 

  46. Cai G, Shi G, Xue S, Lu W (2017) The atherogenic index of plasma is a strong and independent predictor for coronary artery disease in the Chinese Han population. Medicine 96:e8058

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bhardwaj S, Pharm IJ, Sci B, Bhardwaj S, Bhattacharjee J, Bhatnagar MK, Tyagi S (2013) Atherogenic index of plasma, castelli risk index and atherogenic coefficient-new parameters in assessing cardiovascular risk

  48. Azeez TA (2021) Association between lipid indices and 10-year cardiovascular risk of a cohort of black Africans living with type 2 diabetes mellitus. Adv Intern Med 10:38–42

    Article  Google Scholar 

  49. Ottman R (1996) Gene-environment interaction: definitions and study designs. Prev Med (Baltim) 25:764–770

    Article  CAS  Google Scholar 

  50. Mbemi A, Khanna S, Njiki S, Yedjou CG, Tchounwou PB (2020) Impact of gene-environment interactions on cancer development. Int J Environ Res Public Health 17:8089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. He H, Deng Y, Wan H et al (2021) Urinary bisphenol A and its interaction with CYP17A1 rs743572 are associated with breast cancer risk. Chemosphere 286:131880

    Article  PubMed  Google Scholar 

  52. Farzan SF, Karagas MR, Jiang J et al (2015) Gene-arsenic interaction in longitudinal changes of blood pressure: findings from the health effects of arsenic longitudinal study (HEALS) in Bangladesh. Toxicol Appl Pharmacol 288:95–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rovira J, Martínez MÁ, Mari M et al (2022) Mixture of environmental pollutants in breast milk from a Spanish cohort of nursing mothers. Environ Int 166:107375

    Article  CAS  PubMed  Google Scholar 

  54. Center for Health Statistics N (2016) 2016 MEC Laboratory Procedures Manual

  55. Ochoa-Martínez ÁC, Orta-García ST, Varela-Silva JA, Pérez-Maldonado IN (2020) Influence of human paraoxonase-1 polymorphism (Q192R) on serum levels of clinical biomarkers indicatives of cardiovascular diseases risk in Mexican women. Biochem Genet 58:801–820

    Article  PubMed  Google Scholar 

  56. Ruiz-Vera T, Ochoa-Martínez ÁC, Pruneda-Álvarez LG, Domínguez-Cortinas G, Pérez-Maldonado IN (2019) Expression levels of circulating microRNAs-126, -155, and -145 in Mexican women exposed to polycyclic aromatic hydrocarbons through biomass fuel use. Environ Mol Mutagen. https://doi.org/10.1002/em.22273

    Article  PubMed  Google Scholar 

  57. Ochoa-Martínez ÁC, Araiza-Gamboa Y, Varela-Silva JA, Orta-García ST, Carrizales-Yáñez L, Pérez-Maldonado IN (2021) Effect of gene-environment interaction (arsenic exposure—PON1 Q192R polymorphism) on cardiovascular disease biomarkers in Mexican population. Environ Toxicol Pharmacol 81:103519

    Article  PubMed  Google Scholar 

  58. Taussky HH (1954) A microcolorimetric determination of creatine in urine by the Jaffe reaction. J Biol Chem 208:853–861

    Article  CAS  PubMed  Google Scholar 

  59. Fernández-Macías JC, Ochoa-Martínez AC, Pérez-López AA, Pérez-López AL, Neri-Maldonado I, Piña-López IG, Pérez-Maldonado IN (2022) The interplay between exposure to PAHs and MTHFR C677T polymorphism on cardiovascular risk biomarkers in Mexican women. Environ Sci Pollut Res 29:48466–48476

    Article  Google Scholar 

  60. Kamoru AA, Japhet OM, Adetunji AD et al (2017) Castelli risk index, atherogenic index of plasma, and atherogenic coefficient: emerging risk predictors of cardiovascular disease in HIV-treated patients

  61. Anderson TJ, Grégoire J, Pearson GJ et al (2016) 2016 Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol 32:1263–1282

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors show appreciation to all the people contributing to the research who facilitated us in conducting this study. Principally, we are grateful to the participants for their consent.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Alejandra González-Bravo, Myrna Lizbeth López-Ramírez, Ángeles C. Ochoa-Martínez, Leticia Carrizales-Yáñez, and Salvado I. Martinez-Bernal. The first draft of the manuscript was written by Ivan N. Pérez-Maldonado. All authors read and approved the final manuscript. This project was funded by the CONACYT (Consejo Nacional de Ciencia y Tecnología México). FORDECYT. Grant No. 309519.

Corresponding author

Correspondence to Ivan N. Perez-Maldonado.

Ethics declarations

Conflict of interest

Alejandra González‑Bravo, Myrna L. López‑Ramírez, Ángeles C. Ochoa‑Martínez, Leticia Carrizales‑Yáñez, Salvador I. Martínez‑Bernal and Ivan N. Perez‑Maldonado declare that we have no conflict of interest.

Ethical approval and consent to participate

The bioethics committee of the Secretary of Health of the State of San Luis Potosi analyzed and approved the execution of this research. Also, enrolled individuals signed informed consent of voluntary participation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Bravo, A., López-Ramírez, M.L., Ochoa-Martínez, Á.C. et al. Influence of arsenic exposure and TGF-β gene single nucleotide polymorphisms (gene-environment interaction) on cardiovascular risk biomarkers levels in Mexican people from San Luis Potosi, Mexico. Toxicol. Environ. Health Sci. (2024). https://doi.org/10.1007/s13530-024-00206-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13530-024-00206-y

Keywords

Navigation