Skip to main content
Log in

Zinc oxide nanoparticles regulate NF-kB expression and restrict inflammation response in doxorubicin-induced kidney injury in rats

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Object

Doxorubicin (DOX) is an anthracycline drug used for cancer treatment. However, its treatment is contiguous with renal toxic effects. This study aims to investigate the therapeutic effects of zinc oxide nanoparticles (ZnONPs) on doxorubicin-induced nephrotoxicity.

Methods

ZnONPs were prepared by the hydrothermal microwave method and characterized by XRD, SEM (combined with EDX) and HRTEM. To explore the possible nephrotoxicity and antioxidant effect of ZnONPs, rats were grouped as follows: control group, ZnONPs-treated group, doxorubicin group, and ZnONPs-Doxorubicin-treated group.

Results

DOX treatment increases renal tissue oxidative stress markers, while lowering antioxidant enzymes in tissue along with degenerative alterations in the renal tissue compared to control rats. Upon treatment with ZnONPs, a significant alteration was observed in the activities of superoxide dismutase, glutathione peroxidase, malondialdehyde, catalase, and the levels of kidney function, albumin, albuminuria, immune nuclear factor kappa B (NF-kB), and interleukin-6 (IL-6) compared to the doxorubicin group and control group. ZnONPs' administration to the doxorubicin group showed eminent renal injury control and restoration of the biochemical profile. This increases their active role in controlling kidney functions in order to improve nephrotoxicity and inflammatory responses. Histopathological and immunohistochemical observations provided context for these findings. In addition, ZnONPs alone did not show any undesirable effects on the renal parameters. However, its administration improves the renal functions.

Conclusion

We concluded that the administration of ZnONPs ameliorated nephrotoxicity in rats caused by doxorubicin through its antioxidant and anti-inflammatory and antiapoptotic properties. This shows the therapeutic application of ZnONPs as a safe anti-inflammatory and might serve as a potential adjuvant that avoids DOX-induced nephrotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that supports this work are available upon reasonable request.

References

  1. Gutgarts V, Jain T, Zheng J, Maloy MA, Ruiz JD, Pennisi M, Jaimes EA, Perales MA, Sathick J (2020) Acute kidney injury after CAR-T Cell therapy: low incidence and rapid recovery. Biol Blood Marrow Transp 26(6):1071–1076. https://doi.org/10.1016/j.bbmt.2020.02.012

    Article  CAS  Google Scholar 

  2. Pannu N (2013) Bidirectional relationships between acute kidney injury and chronic kidney disease. Curr Opin Nephrol Hypertens 22(3):351–356. https://doi.org/10.1097/MNH.0b013e32835fe5c5

    Article  CAS  PubMed  Google Scholar 

  3. Siew ED, Davenport A (2015) the growth of acute kidney injury: a rising tide or just closer attention to detail. Kidney Int 87(1):46–61. https://doi.org/10.1038/ki.2014.293

    Article  PubMed  Google Scholar 

  4. Khwaja A (2015) KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120(4):179–84. https://doi.org/10.1159/000339789

    Article  Google Scholar 

  5. Chawla LS, Eggers PW, Star RA, Kimmel PL (2014) Acute kidney injury and chronic kidney disease as interconnected syndromes. New England J Med 371(1):58–66

    Article  Google Scholar 

  6. Hsu RK, Hsu CY (2016) The role of acute kidney injury in chronic kidney disease. Seminars Nephrol 36(4):283–292

    Article  Google Scholar 

  7. Chawla LS, Kimmel PL (2012) Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int 82(5):516–524. https://doi.org/10.1038/ki.2012.208

    Article  PubMed  Google Scholar 

  8. Andreucci M, Faga T, Pisani A, Perticone M, Michael A (2017) The ischemic/nephrotoxic acute kidney injury and the use of renal biomarkers in clinical practice. Eur J Intern Med 39:1–8. https://doi.org/10.1016/j.ejim.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  9. Endre ZH, Pickering JW, Walker RJ, Devarajan P, Edelstein CL, Bonventre JV, Frampton CM, Bennett MR, Ma Q, Sabbisetti VS, Vaidya VS, Walcher AM, Shaw GM, Henderson SJ, Nejat M, Schollum JB W, George PM (2011) Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney Int 79(10):1119–1130. https://doi.org/10.1038/ki.2010.555

    Article  CAS  PubMed  Google Scholar 

  10. Pannu N, James M, Hemmelgarn B, Klarenbach S (2013) Alberta kidney disease network association between AKI, recovery of renal function, and long-term outcomes after hospital discharge. Clin J Am Soc Nephrol 8(2):194–202. https://doi.org/10.2215/CJN.06480612

    Article  PubMed  Google Scholar 

  11. Siew ED, Davenport A (2015) The growth of acute kidney injury: a rising tide or just closer attention to detail. Kidney Int 87(1):46–61

    Article  PubMed  Google Scholar 

  12. Sanz AB, Izquierdo MC, Sanchez-Nino MD, Ucero A C, Egido J, Ruiz-Ortega M, Ramos AM, Putterman C, Ortiz A (2014) TWEAK and the progression of renal disease: clinical translation. Nephrol Dialysis Transp 29(Suppl 1):54–62. https://doi.org/10.1093/ndt/gft342

    Article  CAS  Google Scholar 

  13. Tomino Y (2014) Pathogenesis and treatment of chronic kidney disease: a review of our recent basic and clinical data. Kidney Blood Pressure Res 39(5):450–489

    Article  CAS  Google Scholar 

  14. Cagel M, Grotz E, Bernabeu E, Moreton MA, Chiappetta DA (2017) Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discov Today 22(2):270–281

    Article  CAS  PubMed  Google Scholar 

  15. Carvalho C, Santos R, Cardoso S et al (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25):3267–3285

    Article  CAS  PubMed  Google Scholar 

  16. Shivakumar P, Rani MU, Reddy AG et al (2012) A study on the toxic effects of doxorubicin on the histology of Certain organs. Toxicol Int 19(3):241–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sah SK, Khatiwada S, Chaudhary D et al (2015) Doxorubicin induced histomorphometric changes in testes of albino rats. Nepal J Biotechnol 3(1):10–14. https://doi.org/10.3126/njb.v3i1.14223

    Article  Google Scholar 

  18. Wang YM, Wang Y, Harris DC, Alexander SI, Lee VW (2015) Adriamycin nephropathy in BALB/c mice. Curr Protoc Im 108:11–16

    Google Scholar 

  19. Yi M, Zhang L, Liu Y et al (2017) Autophagy is activated to protect against podocyte injury in adriamycin-induced nephropathy. Am J Physiol Ren Physiol 313:74e84

    Article  Google Scholar 

  20. Lee VW, Harris DC (2011) Adriamycin nephropathy: a model of focal segmental glomerulosclerosis. Nephrology (Carlton) 16:30e38

    Article  Google Scholar 

  21. El-Sheikh AA, Morsy MA, Mahmoud MM, Rifaai RA, Abdelrahman AM (2012) Effect of coenzyme-Q10 on doxorubicin-induced nephrotoxicity in rats. Adv Pharm Sci 98:1461. https://doi.org/10.1155/2012/981461

    Article  CAS  Google Scholar 

  22. Hekmat AV, Chenari A, Alipanah H, Javanmardi K (2021) Protective effect of alamandine on doxorubicin-induced nephrotoxicity in rats. BMC Pharmacol Toxicol 22:31

    Article  Google Scholar 

  23. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Particle Fibre Toxicol 10(1):15

    Article  CAS  Google Scholar 

  24. Awadalla AA, Hussein AM, El-Fard YM, Barakat N, Hamam ET, El-Sherbiny, f, El-Shafey MF, Shocker AA, (2021) Effect of zinc oxide nanoparticles and ferulic acid on renal ischemia/ reperfusion injury: possible underlying mechanisms. Biomed Pharmacother 140:111686

    Article  CAS  PubMed  Google Scholar 

  25. Gupta RB, Kompella UB (2006) Nanoparticle technology for drug delivery. Nanoparticle Technol Drug Delivery 159:416

    Google Scholar 

  26. Ali ES, Shaker SM, Islam MT, Khan IN, Shaw S, Rahman MA et al (2020). Targeting Cancer Cells With Nanotherapeutics and Nanodiagnostics. Current Status and Future Perspectives. Semin. Cancer Biol.

  27. Najafzadeh H, Ghoreishi S, Mohammadian B, Rahimi E, Afzalzadeh M, Kazemivarnamkhasti M, Ganjealidarani H (2013) Serum biochemical and histopathological changes in liver and kidney in lambs after zinc oxide nanoparticles administration. Vet World 6(8):534

    Article  Google Scholar 

  28. Dhawan D, Chadha VD (2010) Zinc: a promising agent in dietary chemoprevention of cancer. Indian J Med Res 132:676

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagajyothi P, Cha SJ, Yang IJ, Sreekanth T, Kim KJ, Shin HM (2015) Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J Photochem Photobiol B Biol 146:10–17

    Article  CAS  Google Scholar 

  30. Afifi M, Abdel Azim AM (2015) Ameliorative effect of zinc oxide and silver nanoparticles on antioxidant system in the brain of diabetic rats. Asian Pac J Trop Biomed 5(10):874–878

    Article  CAS  Google Scholar 

  31. Yao S, Feng X, Lu J et al (2018) Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes. Nanotechnology 29(24):244003

    Article  PubMed  Google Scholar 

  32. Torabi M, Kesmati M, Harooni HE, Varzi HN (2013) Effects of nano and conventional Zinc Oxide on anxiety-like behavior in male rats. Indian J Pharmacol 45(5):508–512. https://doi.org/10.4103/0253-7613.117784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eita MA, Ashour RH, El-Khawaga OY (2022) Pentosan polysulfate exerts anti-inflammatory effect and halts albuminuria progression in diabetic nephropathy Role of combined losartan. Fundam Clin Pharmacol 36:801–810

    Article  PubMed  Google Scholar 

  34. Tabacco A, Meiattini F, Moda E, Tarlip (1979) Simplifiednenzymic/colorimetric serum urea nitrogen determination. Clin Chem 25(2):336–337. https://doi.org/10.1093/clinchem/25.2.336a

    Article  CAS  PubMed  Google Scholar 

  35. Doumas BT, Peters T (1997) Serum and urine albumin: a progress report on their measurement and clinical significance. Clin Chim Acta 258(1):3–20. https://doi.org/10.1016/S0009-8981(96)06447-9

    Article  CAS  PubMed  Google Scholar 

  36. Schosinsky KH, Vargas M, Luz Esquivel A, Chavarria MA (1987) Simple spectrophotometric determination of urinary albumin by dyebinding with use of bromphenol blue. Clin Chem 33(2):223

    Article  CAS  PubMed  Google Scholar 

  37. As H, Chenari A, Alipanah H, Javanmardi K (2021) Protective effect of alamandine on doxorubicin-induced nephrotoxicity in rats. BMC Pharmacol Toxicol 22:31

    Article  Google Scholar 

  38. Bancroft JD, Stevens A 1990 Theory and practice of histological techniques. Churchill Livingstone. Edinburgh, No. of pages: 740, 3rd edn

  39. As H, Chenari A, Alipanah H, Javanmardi K (2021) Protective effect of alamandine on doxorubicin-induced nephrotoxicity in rats. BMC Pharmacol Toxicol 22:31

    Article  Google Scholar 

  40. Saad SY, Najjar TA, Al-Rikabi AC (2001) The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats. Pharmacol Res 43(3):211–8

    Article  CAS  PubMed  Google Scholar 

  41. Hussain MA, Abogresha NM, AbdelKader G, Hassan R, Abdelaziz EZ, Greish SM (2021) Antioxidant and anti-inflammatory effects of crocin ameliorate doxorubicin-induced nephrotoxicity in rats. Oxid Med Cell Longev 2021:8841726

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu LL, Li QX, Xia L, Li J, Shao L (2007) Differential effects of dihydropyridine calcium antagonists on doxorubicin-induced nephrotoxicity in rats. Toxicology 231(1):81–90

    Article  CAS  PubMed  Google Scholar 

  43. De Beer EL, Bottone AE, Voest EE (2001) Doxorubicin and mechanical performance of cardiac trabeculae after acute and chronic treatment: a review. Eur J Pharmacol 415(1):1–11

    Article  PubMed  Google Scholar 

  44. Jeansson M, Björck K, Tenstad O, Haraldsson B (2009) Adriamycin alters glomerular endothelium to induce proteinuria. J Am Soc Nephrol 20(1):114–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Afsar T, Razak S, Almajwal A, Al-Disi D (2020) Doxorubicin-induced alterations in kidney functioning, oxidative stress, DNA damage, and renal tissue morphology; Improvement by Acacia hydaspica tannin-rich ethyl acetate fraction. Saudi J Biol Sci 27:2251–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu Q, Li W, Zhao J, Sun W, Yang Q, Chen C et al (2021) Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother 137:111308

    Article  CAS  PubMed  Google Scholar 

  47. Saad AA, Youssef MI, El-Shennawy LK (2009) Cisplatin induced damage in kidney genomic DNA and nephrotoxicity in male rats: the protective effect of grape seed proanthocyanidin extract. Food Chem Toxicol 47:1499–1506

    Article  CAS  PubMed  Google Scholar 

  48. Dhondup T, Qian Q (2017) Electrolyte and acid-base disorders in chronic kidney disease and end-stage kidney failure. Blood Purificat 43:179–188

    Article  CAS  Google Scholar 

  49. Koul A, Shubrant Gupta P (2013) Phytomodulatory potential of lycopene from Lycopersicum esculentum against doxorubicin induced nephrotoxicity. Indian J Exp Biol 51(8):635–45

    CAS  PubMed  Google Scholar 

  50. Mancilla TR, Iskra B, Aune GJ (2019) Doxorubicin-induced cardiomyopathy in Children. Compr Physiol 9(3):905–931

    Article  PubMed  PubMed Central  Google Scholar 

  51. Barakata LA, Barakatb N, Zakariab MM, Khirallaha SM (2020) Protective role of zinc oxide nanoparticles in kidney injury induced by cisplatin in rats. Life Sci 262:118503

    Article  Google Scholar 

  52. ] 52] El-Sheikh AK, Morsy MA, Mahmoud M M, Rifaai RA, Abdelrahman AM) 2012( Effect of Coenzyme-Q10 on Doxorubicin-Induced Nephrotoxicity in Rats. 981461, 8 pages.

  53. Sanz AB, Sanchez-Niño MD, Ramos AM, Moreno JA, Santamaria B, RuizOrtega M et al (2010) NF-κB in renal inflammation. J Am Soc Nephrol 21(8):1254–62

    Article  CAS  PubMed  Google Scholar 

  54. Aboyoussef AM, Abdel-Sat tar AR, Abdel-Bakky MS, Messiha BAS, (2021) Enoxaparin prevents CXCL16/ADAM10-mediated cisplatin renal toxicity: role of the coagulation system and the transcriptional factor NF-κB. Life Sci. 270:119120

    Article  CAS  PubMed  Google Scholar 

  55. Sutariya B, Saraf M (2018) α-asarone reduce proteinuria by restoring antioxidant enzymes activities and regulating necrosis factor κB signaling pathway in doxorubicin-induced nephrotic syndrome. Biomed Pharmacother 98:318–324

    Article  CAS  PubMed  Google Scholar 

  56. Vyas D, Laput G, Vyas AK (2014) Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. OncoTargets Therapy 7:1015–23

    Article  PubMed  PubMed Central  Google Scholar 

  57. Somade OT, Ajayi BO, Safiriyu OA, Oyabunmi OS, Akamo AJ (2019) Renal and testicular up-regulation of pro-inflammatory chemokines (RANTES and CCL2) and cytokines (TNF-α, IL-1β, IL-6) following acute edible camphor administration is through activation of NF-kB in rats. Toxicol Rep 6:759–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nagajyothi P et al (2015) Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesised using polygala tenuifolia root extract. J Photoch Photobio B 146:10–17

    Article  CAS  Google Scholar 

  59. Kim MH, Seo JH, Kim HM, Jeong HJ (2014) Zinc oxide nanoparticles, a novel candidate for the treatment of allergic inflammatory diseases. Eur J Pharmacol 738:31–39

    Article  CAS  PubMed  Google Scholar 

  60. Adamcakova-Dodd A et al (2014) Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part Fibre Toxicol 11(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rasha E, Mostafa DO, Saleh DF, Mansour, (2018) Cisplatin-induced nephrotoxicity in rats: modulatory role of simvastatin and rosuvastatin against apoptosis and inflammation. J Appl Pharm Sci 8(04):043–050

    Google Scholar 

  62. Sanajou D, Nazari Soltan Ahmad S, Hosseini V, Kalantary-Charvadeh A, Marandi Y, Roshangar L, Bahrambeigi S, Mesgari-Abbasi M. (2019) β-Lapachone protects against doxorubicin-induced nephrotoxicity via NAD+/AMPK/NF-kB in mice. Naunyn Schmiedebergs Arch Pharmacol 392:633–640

    Article  CAS  PubMed  Google Scholar 

  63. Wang S, Kotamraju S, Konorev E, Kalivendi S, Joseph J, Kalyanaraman B (2002) Activation of nuclear factor-κB during doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: the role of hydrogen peroxide. Biochem J 367(3):729–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Chemistry Department, Faculty of Science, Mansoura University, Egypt, for providing some of the facilities required during this study. They are also thankful for the faculty of Science, Suez Canal University, Egypt, for providing facilities required for the study.

Author information

Authors and Affiliations

Authors

Contributions

The study's inception and design were contributed by all authors.

Corresponding author

Correspondence to Omali Y. El-Khawaga.

Ethics declarations

Conflict of interest

Ahlam Elgohary, Faten Metwalli, Nasser Y. Mostafa, Manar reffat and Omali Y. El-Khawaga declare that we have no conflict of interest.

Ethical approval

This study was approved by Research Ethical Committee of the Suez Canal University, Ismailia, Egypt. Number (REC25/2022).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elgohary, A., Metwalli, F., Mostafa, N.Y. et al. Zinc oxide nanoparticles regulate NF-kB expression and restrict inflammation response in doxorubicin-induced kidney injury in rats. Toxicol. Environ. Health Sci. 15, 437–448 (2023). https://doi.org/10.1007/s13530-023-00194-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-023-00194-5

Keywords

Navigation