Skip to main content
Log in

Anti-inflammatory and antioxidative effects of dexpanthenol on nicotine-induced lung injury in rats

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Aim

Lung inflammation is a consequence of smoking, tobacco use, nicotine addiction, and the accumulation of toxicants in the body. This study aimed to investigate the association between nicotine-induced lung injury and NF-κB activation, as well as changes in redox balance. Furthermore, the protective role of Dexpanthenol against this damage was examined.

Method

A total of 32 male rats were divided into four groups: Control, DEX, Nicotine, and Nicotine + DEX. Nicotine (0.5 mg/kg/day) and Dexpanthenol (500 mg/kg/day) were administered intraperitoneally. Subsequently, the levels of nuclear and cytoplasmic NF-κB in lung tissue were analyzed. Inflammation and oxidative stress markers and histopathological evaluations of the lung tissue were conducted.

Results

Nicotine administration resulted in increased levels of tissue MDA and TOS, as well as decreased levels of GSH-Px, GSH, GST, SOD, and TAS. Additionally, nicotine administration led to elevated nuclear expression of NF-κB protein, IL-1β, IL-6 proinflammatory cytokine levels, and Galectin-3 levels, which modulate cytokine release. Moreover, histopathological examinations revealed a higher population of diffuse lymphocytes and macrophages, indicating increased lung inflammation. Dexpanthenol administration ameliorated these adverse effects of nicotine and reduced them to levels comparable to the control group.

Conclusion

Nicotine-induced lung injury promoted oxidative stress and inflammation through modulation of NF-κB’s nuclear translocation. Dexpanthenol, on the other hand, may serve as a dietary supplement to mitigate lung inflammation caused by smoking and tobacco use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data and materials availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Abdel Fattah S, Rizk AAE, Motawie AG, Abd El-Galil TI, El Sebaie M (2019) Effects of nicotine on rat adrenal gland: crosstalk between oxidative and inflammatory markers, and amelioration by melatonin. Biotech Histochem 94(4):234–243. https://doi.org/10.1080/10520295.2018.1545159

    Article  CAS  PubMed  Google Scholar 

  2. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  3. Agarwal P, Bagewadi A, Keluskar V, Vinuth DP (2019) Superoxide dismutase, glutathione peroxidase, and catalase antioxidant enzymes in chronic tobacco smokers and chewers: a case-control study. Indian J Dent Res 30(2):219–225. https://doi.org/10.4103/ijdr.IJDR_268_12

    Article  PubMed  Google Scholar 

  4. Ahmad S, Zafar I, Mariappan N, Husain M, Wei CC, Vetal N, Eltoum IA, Ahmad A (2019) Acute pulmonary effects of aerosolized nicotine. Am J Physiol Lung Cell Mol Physiol 316(1):L94–L104. https://doi.org/10.1152/ajplung.00564.2017

    Article  PubMed  Google Scholar 

  5. Ahmed MA, Hassan KH, Hassanein KM, Waly H (2014) Role of vitamin C and selenium in attenuation of nicotine induced oxidative stress, P53 and Bcl2 expression in adult rat spleen. Pathophysiology 21(3):211–217. https://doi.org/10.1016/j.pathophys.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  6. Anbarasi K, Vani G, Balakrishna K, Devi CS (2006) Effect of bacoside A on brain antioxidant status in cigarette smoke exposed rats. Life Sci 78(12):1378–1384. https://doi.org/10.1016/j.lfs.2005.07.030

    Article  CAS  PubMed  Google Scholar 

  7. Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491. https://doi.org/10.3389/fimmu.2014.00491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ayala A, Munoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438. https://doi.org/10.1155/2014/360438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barr J, Sharma CS, Sarkar S, Wise K, Dong L, Periyakaruppan A, Ramesh GT (2007) Nicotine induces oxidative stress and activates nuclear transcription factor kappa B in rat mesencephalic cells. Mol Cell Biochem 297(1–2):93–99. https://doi.org/10.1007/s11010-006-9333-1

    Article  CAS  PubMed  Google Scholar 

  10. Benowitz NL, Hukkanen J, Jacob P 3rd (2009) Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol 192:29–60. https://doi.org/10.1007/978-3-540-69248-5_2

    Article  CAS  Google Scholar 

  11. Bhattacharjee A, Prasad SK, Pal S, Maji B, Syamal AK, Mukherjee S (2016) Synergistic protective effect of folic acid and vitamin B12 against nicotine-induced oxidative stress and apoptosis in pancreatic islets of the rat. Pharm Biol 54(3):433–444. https://doi.org/10.3109/13880209.2015.1043561

    Article  CAS  PubMed  Google Scholar 

  12. Blake DJ, Singh A, Kombairaju P, Malhotra D, Mariani TJ, Tuder RM, Gabrielson E, Biswal S (2010) Deletion of Keap1 in the lung attenuates acute cigarette smoke-induced oxidative stress and inflammation. Am J Respir Cell Mol Biol 42(5):524–536. https://doi.org/10.1165/rcmb.2009-0054OC

    Article  CAS  PubMed  Google Scholar 

  13. Burns AR, Hosford SP, Dunn LA, Walker DC, Hogg JC (1989) Respiratory epithelial permeability after cigarette smoke exposure in guinea pigs. J Appl Physiol (1985) 66(5):2109–2116. https://doi.org/10.1152/jappl.1989.66.5.2109

    Article  CAS  PubMed  Google Scholar 

  14. Charokopos N, Apostolopoulos N, Kalapodi M, Leotsinidis M, Karamanos N, Mouzaki A (2009) Bronchial asthma, chronic obstructive pulmonary disease and NF-kappaB. Curr Med Chem 16(7):867–883. https://doi.org/10.2174/092986709787549280

    Article  CAS  PubMed  Google Scholar 

  15. Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J (2023) Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem 11:1158198. https://doi.org/10.3389/fchem.2023.1158198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Depeint F, Bruce WR, Shangari N, Mehta R, O’Brien PJ (2006) Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem Biol Interact 163(1–2):94–112. https://doi.org/10.1016/j.cbi.2006.04.014

    Article  CAS  PubMed  Google Scholar 

  17. Ebner F, Heller A, Rippke F, Tausch I (2002) Topical use of dexpanthenol in skin disorders. Am J Clin Dermatol 3(6):427–433. https://doi.org/10.2165/00128071-200203060-00005

    Article  PubMed  Google Scholar 

  18. Eiserich JP, van der Vliet A, Handelman GJ, Halliwell B, Cross CE (1995) Dietary antioxidants and cigarette smoke-induced biomolecular damage: a complex interaction. Am J Clin Nutr 62(6 Suppl):1490S-1500S. https://doi.org/10.1093/ajcn/62.6.1490S

    Article  CAS  PubMed  Google Scholar 

  19. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

  20. Ermis H, Parlakpinar H, Gulbas G, Vardi N, Polat A, Cetin A, Kilic T, Aytemur ZA (2013) Protective effect of dexpanthenol on bleomycin-induced pulmonary fibrosis in rats. Naunyn-Schmiedebergs Arch Pharmacol 386(12):1103–1110. https://doi.org/10.1007/s00210-013-0908-6

    Article  CAS  PubMed  Google Scholar 

  21. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72(11):1493–1505. https://doi.org/10.1016/j.bcp.2006.04.011

    Article  CAS  PubMed  Google Scholar 

  22. Guo Y, Li S, Wang Z, Jiang F, Guan Y, Huang M, Zhong G (2022) Nicotine delivery and pharmacokinetics of an electronic cigarette compared with conventional cigarettes in chinese adult smokers: a randomized open-label crossover clinical study. Nicotine Tob Res 24(12):1881–1888. https://doi.org/10.1093/ntr/ntac143

    Article  CAS  PubMed  Google Scholar 

  23. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    Article  CAS  PubMed  Google Scholar 

  24. Halliwell B, Gutteridge MC (2022) Reprint of: oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 726:109246. https://doi.org/10.1016/j.abb.2022.109246

    Article  CAS  PubMed  Google Scholar 

  25. Helen A, Krishnakumar K, Vijayammal PL, Augusti KT (2000) Antioxidant effect of onion oil (Allium cepa. Linn) on the damages induced by nicotine in rats as compared to alpha-tocopherol. Toxicol Lett 116(1–2):61–68. https://doi.org/10.1016/s0378-4274(00)00208-3

    Article  CAS  PubMed  Google Scholar 

  26. Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med 54(4):287–293. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

  27. Iribarren C, Jacobs DR Jr, Sidney S, Gross MD, Eisner MD (2000) Cigarette smoking, alcohol consumption, and risk of ARDS: a 15-year cohort study in a managed care setting. Chest 117(1):163–168. https://doi.org/10.1378/chest.117.1.163

    Article  CAS  PubMed  Google Scholar 

  28. Jaques JA, Rezer JF, Carvalho FB, da Rosa MM, Gutierres JM, Goncalves JF, Schmatz R et al (2012) Curcumin protects against cigarette smoke-induced cognitive impairment and increased acetylcholinesterase activity in rats. Physiol Behav 106(5):664–669. https://doi.org/10.1016/j.physbeh.2012.05.001

    Article  CAS  PubMed  Google Scholar 

  29. Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3(1):17–26. https://doi.org/10.1038/nrd1279

    Article  CAS  PubMed  Google Scholar 

  30. Khaled S, Makled MN, Nader MA (2020) Tiron protects against nicotine-induced lung and liver injury through antioxidant and anti-inflammatory actions in rats in vivo. Life Sci 260:118426. https://doi.org/10.1016/j.lfs.2020.118426

    Article  CAS  PubMed  Google Scholar 

  31. Lakshmi SP, Reddy AT, Kodidhela LD, Varadacharyulu NC (2020) Epigallocatechin gallate diminishes cigarette smoke-induced oxidative stress, lipid peroxidation, and inflammation in human bronchial epithelial cells. Life Sci 259:118260. https://doi.org/10.1016/j.lfs.2020.118260

    Article  CAS  PubMed  Google Scholar 

  32. Lawson GM, Hurt RD, Dale LC, Offord KP, Croghan IT, Schroeder DR, Jiang NS (1998) Application of serum nicotine and plasma cotinine concentrations to assessment of nicotine replacement in light, moderate, and heavy smokers undergoing transdermal therapy. J Clin Pharmacol 38(6):502–509. https://doi.org/10.1002/j.1552-4604.1998.tb05787.x

    Article  CAS  PubMed  Google Scholar 

  33. Li-Mei W, Jie T, Shan-He W, Dong-Mei M, Peng-Jiu Y (2016) Anti-inflammatory and anti-oxidative effects of dexpanthenol on lipopolysaccharide induced acute lung injury in mice. Inflammation 39(5):1757–1763. https://doi.org/10.1007/s10753-016-0410-7

    Article  CAS  PubMed  Google Scholar 

  34. Li Q, Wang G, Xiong SH, Cao Y, Liu B, Sun J, Li L et al (2020) Bu-Shen-Fang-Chuan formula attenuates cigarette smoke-induced inflammation by modulating the PI3K/Akt-Nrf2 and NF-kappaB signalling pathways. J Ethnopharmacol 261:113095. https://doi.org/10.1016/j.jep.2020.113095

    Article  CAS  PubMed  Google Scholar 

  35. Liu H, Ren J, Chen H, Huang Y, Li H, Zhang Z, Wang J (2014) Resveratrol protects against cigarette smoke-induced oxidative damage and pulmonary inflammation. J Biochem Mol Toxicol 28(10):465–471. https://doi.org/10.1002/jbt.21586

    Article  CAS  PubMed  Google Scholar 

  36. Liu T, Zhang L, Joo D, Sun SC (2017) NF-kappaB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu X, Ma Y, Luo L, Zong D, Li H, Zeng Z, Cui Y, Meng W, Chen Y (2022) Dihydroquercetin suppresses cigarette smoke induced ferroptosis in the pathogenesis of chronic obstructive pulmonary disease by activating Nrf2-mediated pathway. Phytomedicine 96:153894. https://doi.org/10.1016/j.phymed.2021.153894

    Article  CAS  PubMed  Google Scholar 

  38. Lu Q, Gottlieb E, Rounds S (2018) Effects of cigarette smoke on pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 314(5):L743–L756. https://doi.org/10.1152/ajplung.00373.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. MacNee W (2000) Oxidants/antioxidants and COPD. Chest 117(5 Suppl 1):303S-317S. https://doi.org/10.1378/chest.117.5_suppl_1.303s-a

    Article  CAS  PubMed  Google Scholar 

  40. Matés JM, Sánchez-Jiménez F (1999) Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci 4:D339-345. https://doi.org/10.2741/mates

    Article  PubMed  Google Scholar 

  41. Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM, Group Acute Lung Injury in Animals Study (2011) An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 44(5):725–738. https://doi.org/10.1165/rcmb.2009-0210ST

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mayer B (2014) How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century. Arch Toxicol 88(1):5–7. https://doi.org/10.1007/s00204-013-1127-0

    Article  CAS  PubMed  Google Scholar 

  43. Moiseenok AG, Komar VI, Khomich TI, Kanunnikova NP, Slyshenkov VS (2000) Pantothenic acid in maintaining thiol and immune homeostasis. BioFactors 11(1–2):53–55. https://doi.org/10.1002/biof.5520110115

    Article  CAS  PubMed  Google Scholar 

  44. Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21(1):103–115. https://doi.org/10.1038/cr.2010.178

    Article  CAS  PubMed  Google Scholar 

  45. Murphy SE (2021) Biochemistry of nicotine metabolism and its relevance to lung cancer. J Biol Chem 296:100722. https://doi.org/10.1016/j.jbc.2021.100722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Novick AM, Duffy KA, Johnson RL, Sammel MD, Cao W, Strasser AA, Sofuoglu M et al (2022) Effect of progesterone administration in male and female smokers on nicotine withdrawal and neural response to smoking cues: role of progesterone conversion to allopregnanolone. Biol Sex Differ 13(1):60. https://doi.org/10.1186/s13293-022-00472-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oatis D, Simon-Repolski E, Balta C, Mihu A, Pieretti G, Alfano R, Peluso L, Trotta MC, D’Amico M, Hermenean A (2022) Cellular and molecular mechanism of pulmonary fibrosis post-COVID-19: focus on galectin-1, -3, -8, -9. Int J Mol Sci 23(15):8210. https://doi.org/10.3390/ijms23158210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  49. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169

    CAS  PubMed  Google Scholar 

  50. Pistillo F, Clementi F, Zoli M, Gotti C (2015) Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects. Prog Neurobiol 124:1–27. https://doi.org/10.1016/j.pneurobio.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  51. Rudrapal M, Maji S, Prajapati SK, Kesharwani P, Deb PK, Khan J, Mohamed Ismail R et al (2022) Protective effects of diets rich in polyphenols in cigarette smoke (CS)-induced oxidative damages and associated health implications. Antioxidants (Basel) 11(7):1217. https://doi.org/10.3390/antiox11071217

    Article  CAS  PubMed  Google Scholar 

  52. Schep LJ, Slaughter RJ, Beasley DM (2009) Nicotinic plant poisoning. Clin Toxicol (Phila, Pa.) 47(8):771–781. https://doi.org/10.1080/15563650903252186

    Article  CAS  Google Scholar 

  53. Schuliga M (2015) NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules 5(3):1266–1283. https://doi.org/10.3390/biom5031266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sezer Z, Ekiz Yilmaz T, Gungor ZB, Kalay F, Guzel E (2020) Effects of vitamin E on nicotine-induced lipid peroxidation in rat granulosa cells: folliculogenesis. Reprod Biol 20(1):63–74. https://doi.org/10.1016/j.repbio.2019.12.004

    Article  PubMed  Google Scholar 

  55. Sheng HP, Yuen ST, So HL, Cho CH (2001) Hepatotoxicity of prenatal and postnatal exposure to nicotine in rat pups. Exp Biol Med (Maywood) 226(10):934–939. https://doi.org/10.1177/153537020122601009

    Article  CAS  PubMed  Google Scholar 

  56. Sivandzade F, Prasad S, Bhalerao A, Cucullo L (2019) NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol 21:101059. https://doi.org/10.1016/j.redox.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  57. Slyshenkov VS, Dymkowska D, Wojtczak L (2004) Pantothenic acid and pantothenol increase biosynthesis of glutathione by boosting cell energetics. FEBS Lett 569(1–3):169–172. https://doi.org/10.1016/j.febslet.2004.05.044

    Article  CAS  PubMed  Google Scholar 

  58. Sobkowiak R, Lesicki A (2013) Absorption, metabolism and excretion of nicotine in humans. Postepy Biochem 59(1):33–44

    CAS  PubMed  Google Scholar 

  59. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500

    Article  CAS  PubMed  Google Scholar 

  60. Tian X, Xue Y, Xie G, Zhou Y, Xiao H, Ding F, Zhang M (2021) (-)-Epicatechin ameliorates cigarette smoke-induced lung inflammation via inhibiting ROS/NLRP3 inflammasome pathway in rats with COPD. Toxicol Appl Pharmacol 429:115674. https://doi.org/10.1016/j.taap.2021.115674

    Article  CAS  PubMed  Google Scholar 

  61. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374. https://doi.org/10.1089/ars.2007.1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tutun B, Elbe H, Vardi N, Parlakpinar H, Polat A, Gunaltili M, Guclu MM, Yasar EN (2019) Dexpanthenol reduces diabetic nephropathy and renal oxidative stress in rats. Biotech Histochem 94(2):84–91. https://doi.org/10.1080/10520295.2018.1508746

    Article  CAS  PubMed  Google Scholar 

  63. Vansickel AR, Eissenberg T (2013) Electronic cigarettes: effective nicotine delivery after acute administration. Nicotine Tob Res 15(1):267–270. https://doi.org/10.1093/ntr/ntr316

    Article  CAS  PubMed  Google Scholar 

  64. Viola TW, Orso R, Florian LF, Garcia MG, Gomes MGS, Mardini EM, Niederauer JPO, Zaparte A, Grassi-Oliveira R (2023) Effects of substance use disorder on oxidative and antioxidative stress markers: a systematic review and meta-analysis. Addict Biol 28(1):e13254. https://doi.org/10.1111/adb.13254

    Article  CAS  PubMed  Google Scholar 

  65. Ware LB, Lee JW, Wickersham N, Nguyen J, Matthay MA, Calfee CS, Donor NCT (2014) Donor smoking is associated with pulmonary edema, inflammation and epithelial dysfunction in ex vivo human donor lungs. Am J Transplant 14(10):2295–2302. https://doi.org/10.1111/ajt.12853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamanaka H, Nakajima M, Nishimura K, Yoshida R, Fukami T, Katoh M, Yokoi T (2004) Metabolic profile of nicotine in subjects whose CYP2A6 gene is deleted. Eur J Pharm Sci 22(5):419–425. https://doi.org/10.1016/j.ejps.2004.04.012

    Article  CAS  PubMed  Google Scholar 

  67. Yoshida T, Tuder RM (2007) Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev 87(3):1047–1082. https://doi.org/10.1152/physrev.00048.2006

    Article  CAS  PubMed  Google Scholar 

  68. Zahran WE, Emam MA (2018) Renoprotective effect of Spirulina platensis extract against nicotine-induced oxidative stress-mediated inflammation in rats. Phytomedicine 49:106–110. https://doi.org/10.1016/j.phymed.2018.06.042

    Article  CAS  PubMed  Google Scholar 

  69. Zhang HH, Zhou XJ, Zhong YS, Ji LT, Yu WY, Fang J, Ying HZ, Li CY (2022) Naringin suppressed airway inflammation and ameliorated pulmonary endothelial hyperpermeability by upregulating Aquaporin1 in lipopolysaccharide/cigarette smoke-induced mice. Biomed Pharmacother 150:113035. https://doi.org/10.1016/j.biopha.2022.113035

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Inonu University Scientific Research Project Units (Project no: TYL-2021-2508).

Author information

Authors and Affiliations

Authors

Contributions

MA conducted the experiments; MMÜ carried out the western blot and data analysis; NÜ conducted the research and wrote the paper; ET carried out histopathologic analysis; EG conceived the study and designed experiments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Meral Aslan.

Ethics declarations

Conflict of interest

Meral Aslan, Elif Gürel, Nuray Üremiş, Muhammed Mehdi Üremiş, and Elif Taşlidere declare that we have no conflict of interest.

Ethical approval

Ethical approval of the study was obtained from the Inonu University Faculty of Medicine Experimental Animals Ethics Committee (Decision No: 2021/3-2). The study was carried out with 32 twelve-week-old male Sprague Dawley rats taken from İnönü University Experimental Animals Production and Research Center.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, M., Gürel, E., Üremiş, N. et al. Anti-inflammatory and antioxidative effects of dexpanthenol on nicotine-induced lung injury in rats. Toxicol. Environ. Health Sci. 15, 303–313 (2023). https://doi.org/10.1007/s13530-023-00184-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-023-00184-7

Keywords

Navigation