Skip to main content
Log in

A review of metallic nanostructures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

  • Mini Review
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective and methods

SARS-COV2 (severe acute respiratory syndrome coronavirus 2) has become life-threatening and emerged as a global pandemic in recent years. Although the understanding of coronaviruses has become the focus in almost every research field, efficient early diagnosis and treatment techniques still need improvement. Nanotechnology has presented various solutions to fighting SARS-CoV-2 through infection control measures, detection, therapeutics, and vaccines. More specifically, metallic nanoparticles such as gold, silver, iron, and others made a lot of effort to translate the products for real-time applications to control the pandemic.

Results and conclusion

Owing to their unique characteristics, such as high surface area volume ratio, non-toxic and excellent antiviral properties, metallic nanoparticles are extensively used in developing nanotechnology-based products like disinfection systems, nano-based masks, and other protecting equipment, diagnostic kits, effective therapeutic agents, and vaccines. In this review, we will discuss different metallic nanoparticles, their characteristics, and different approaches of their use to combat SARS-COV2. Thus, this review is highly instructive and helpful in developing strategies based on nanostructures to combat COVID-19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ashok G, Paul JJ, Thusnavis MB, Packiavathy SV, Gautam S (2023) Internet of Things (IoT) based automated sanitizer dispenser and COVID-19 statistics reporter in a post-pandemic world. Health Technol 13(2):327–341

    Article  Google Scholar 

  2. Liu W, Liu L, Kou G, Zheng Y, Ding Y et al (2020) Evaluation of nucleocapsid and spike protein-based enzyme-linked immunosorbent assays for detecting antibodies against SARS-CoV-2. J Clin Microbiol 6:e00461-e520

    Google Scholar 

  3. Gautam S (2020) The influence of COVID-19 on air quality in India: a boon or inutile. Bull Environ Contam Toxicol 104(6):724–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh A, Gaud B, Jaybhaye S (2020) Optimization of synthesis parameters of silver nanoparticles and its antimicrobial activity. Mater Sci Energy Technol 3:232–236

    CAS  Google Scholar 

  5. Jayakumar, J, Ebanesar A, Gautam S (2023) Predictive analysis, diagnosis of COVID-19 through computational screening and validation with spectro photometrical approach. Toxicol Environ Health Sci 1–9.

  6. Zhao Z, Cui H, Song W, Ru X, Zhou W, et al (2020) A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. Mol Biol

  7. Kampf G, Todt D, Pfaender S, Steinmann E (2020) Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 3:246–251

    Article  Google Scholar 

  8. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX et al (2003) Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science 5643:276–278

    Article  Google Scholar 

  9. Zou L, Ruan F, Huang M, Liang L, Huang H et al (2020) SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med 12:1177–1179

    Article  Google Scholar 

  10. Onofrio L, Caraglia M, Facchini G, Margherita V, Placido SD et al (2020) Toll-like receptors and COVID-19: a two-faced story with an exciting ending. Future Sci OA 8:FSO605

    Article  Google Scholar 

  11. Salata O (2004) No title found. J Nanobiotechnol 1:3

    Article  Google Scholar 

  12. Khurana A, Allawadhi P, Khurana I, Allwadhi S, Weiskirchen R et al (2021) Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today 38:101142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nel AE, Miller JF (2021) Nano-enabled COVID-19 vaccines: meeting the challenges of durable antibody plus cellular immunity and immune escape. ACS Nano 4:5793–5818

    Article  Google Scholar 

  14. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S et al (2021) Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 5:403–416

    Article  Google Scholar 

  15. Hayashi Y, Matsuzawa M, Yamaguchi J, Yonehara S, Matsumoto Y et al (2006) Large nonlinear effect observed in the enantiomeric excess of proline in solution and that in the solid state. Angew Chem 28:4709–4713

    Article  Google Scholar 

  16. Mody VV, Nounou MI, Bikram M (2009) Novel nanomedicine-based MRI contrast agents for gynecological malignancies. Adv Drug Deliv Rev 10:795–807

    Article  Google Scholar 

  17. Praetorius N, Mandal T (2007) Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul 1:37–51

    Article  CAS  PubMed  Google Scholar 

  18. Isaacoff BP, Brown KA (2017) Progress in top-down control of bottom-up assembly. Nano Lett 11:6508–6510

    Article  Google Scholar 

  19. Khoshnevisan K, Maleki H, Baharifar H (2021) Nanobiocide based-silver nanomaterials upon coronaviruses: approaches for preventing viral infections. Nanoscale Res Lett 1:100

    Article  Google Scholar 

  20. Laurent S, Forge D, Port M, Roch A, Robic C et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 6:2064–2110

    Article  Google Scholar 

  21. Chandrakala V, Aruna V, Angajala G (2022) Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater 6:1593–1615

    Article  Google Scholar 

  22. Khan JA, Kudgus RA, Szabolcs A, Dutta S, Wang E et al (2011) Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo. PLoS ONE 6:e20347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li W-R, Xie X-B, Shi Q-S, Zeng H-Y, Ou-Yang Y-S et al (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 4:1115–1122

    Article  Google Scholar 

  24. Yıldırım ÖA, Durucan C (2010) Synthesis of zinc oxide nanoparticles elaborated by microemulsion method. J Alloys Compd 2:944–949

    Article  Google Scholar 

  25. Calderón L, Harris R, Cordoba-Diaz M, Elorza M, Elorza B et al (2013) Nano and microparticulate chitosan-based systems for antiviral topical delivery. Eur J Pharm Sci 1–2:216–222

    Article  Google Scholar 

  26. Yeh Y-C, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 6:1871–1880

    Article  Google Scholar 

  27. Li C, Shuford KL, Park Q-H, Cai W, Li Y et al (2007) High-yield synthesis of single-crystalline gold nano-octahedra. Angew Chem Int Ed 18:3264–3268

    Article  Google Scholar 

  28. Darroudi M, Ahmad MB, Zamiri R, Abdullah AH, Ibrahim NA et al (2011) Preparation and characterization of gelatin mediated silver nanoparticles by laser ablation. J Alloys Compd 4:1301–1304

    Article  Google Scholar 

  29. Li M, Cushing SK, Wu N (2015) Plasmon-enhanced optical sensors: a review. Analyst 2:386–406

    Article  Google Scholar 

  30. Tapasztó L, Dobrik G, Lambin P, Biró LP (2008) Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat Nanotechnol 7:397–401

    Article  Google Scholar 

  31. Nikbakht H, Gill P, Tabarraei A, Niazi A (2014) Nanomolecular detection of human influenza virus type A using reverse transcription loop-mediated isothermal amplification assisted with rod-Shaped gold nanoparticles. RSC Adv 26:13575

    Article  Google Scholar 

  32. Manawi Y, Ihsanullah SA, Al-Ansari T, Atieh M (2018) A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials 5:822

    Article  Google Scholar 

  33. Komarneni S, Katsuki H (2002) Nanophase materials by a novel microwave-hydrothermal process. Pure Appl Chem 9:1537–1543

    Article  Google Scholar 

  34. Sreekanth TVM, Nagajyothi PC, Muthuraman P, Enkhtaivan G, Vattikuti SVP et al (2018) Ultra-sonication-assisted silver nanoparticles using panax ginseng root extract and their anti-cancer and antiviral activities. J Photochem Photobiol B 188:6–11

    Article  CAS  PubMed  Google Scholar 

  35. Nissinen T, Ikonen T, Lama M, Riikonen J, Lehto V-P (2016) Improved production efficiency of mesoporous silicon nanoparticles by pulsed electrochemical etching. Powder Technol 288:360–365

    Article  CAS  Google Scholar 

  36. Salleh A, Naomi R, Utami ND, Mohammad AW, Mahmoudi E et al (2020) The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomaterials 8:1566

    Article  Google Scholar 

  37. Vahedifard F, Chakravarthy K (2021) Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emergent Mater 1:75–99

    Article  Google Scholar 

  38. Al-Hatamleh MAI, Hatmal MM, Alshaer W, Rahman ENSEA, Mohd-Zahid MH et al (2021) COVID-19 infection and nanomedicine applications for development of vaccines and therapeutics: an overview and future perspectives based on polymersomes. Eur J Pharmacol 896:173930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gutierrez L, Li X, Wang J, Nangmenyi G, Economy J et al (2009) Adsorption of rotavirus and bacteriophage MS2 using glass fiber coated with hematite nanoparticles. Water Res 20:5198–5208

    Article  Google Scholar 

  40. Koohi SR, Derakhshan MA, Faridani F, Muhammad Nejad S, Amanpour S et al (2018) Plasmonic photothermal therapy of colon cancer cells utilising gold nanoshells: an in vitro study. IET Nanobiotechnol 2:196–200

    Article  Google Scholar 

  41. Kubo R (1962) Electronic properties of metallic fine particles. I J Phys Soc Jpn 6:975–986

    Article  Google Scholar 

  42. Zhou J, Kroll AV, Holay M, Fang RH, Zhang L (2020) Biomimetic nanotechnology toward personalized vaccines. Adv Mater 13:1901255

    Article  Google Scholar 

  43. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 14:7238–7248

    Article  Google Scholar 

  44. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 40:8410–8426

    Article  Google Scholar 

  45. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I et al (1997) Single molecule detection using surface-enhanced raman scattering (SERS). Phys Rev Lett 9:1667–1670

    Article  Google Scholar 

  46. Talebian S, Wallace GG, Schroeder A, Stellacci F, Conde J (2020) Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat Nanotechnol 8:618–621

    Article  Google Scholar 

  47. Clem AL, Sims J, Telang S, Eaton JW, Chesney J (2007) Virus detection and identification using random multiplex (RT)-PCR with 3’-locked random primers. Virol J 1:65

    Article  Google Scholar 

  48. Jung JY, Yoon HK, An S, Lee JW, Ahn E-R et al (2018) Rapid oral bacteria detection based on real-time PCR for the forensic identification of saliva. Sci Rep 1:10852

    Article  Google Scholar 

  49. Xiang J, Yan M, Li H, Liu T, Lin C, et al (2020) Evaluation of enzyme-linked immunoassay and colloidal gold-immunochromatographic assay kit for detection of novel coronavirus (SARS-Cov-2) causing an outbreak of pneumonia (COVID-19). Epidemiology

  50. Santiago I (2020) Trends and innovations in biosensors for COVID-19 mass testing. ChemBioChem 20:2880–2889

    Article  Google Scholar 

  51. Carter LJ, Garner LV, Smoot JW, Li Y, Zhou Q et al (2020) Assay techniques and test development for COVID-19 diagnosis. ACS Cent Sci 5:591–605

    Article  Google Scholar 

  52. Huang X, Zhao Z, Fan J, Tan Y, Zheng N (2011) Amine-assisted synthesis of concave polyhedral platinum nanocrystals having 411 high-index facets. J Am Chem Soc 13:4718–4721

    Article  Google Scholar 

  53. Gao Y, Yan L, Huang Y, Liu F, Zhao Y et al (2020) Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 6492:779–782

    Article  Google Scholar 

  54. Glynou K, Ioannou PC, Christopoulos TK, Syriopoulou V (2003) Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal Chem 16:4155–4160

    Article  Google Scholar 

  55. Ventura BD, Cennamo M, Minopoli A, Campanile R, Censi SB et al (2020) Colorimetric test for fast detection of SARS-CoV-2 in nasal and throat swabs. ACS Sens 10:3043–3048

    Article  Google Scholar 

  56. Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M et al (2020) Diagnosing COVID-19: the disease and tools for detection. ACS Nano 4:3822–3835

    Article  Google Scholar 

  57. Loynachan CN, Thomas MR, Gray ER, Richards DA, Kim J et al (2018) Platinum nanocatalyst amplification: redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range. ACS Nano 1:279–288

    Article  Google Scholar 

  58. Khan J, Rasmi Y, Kırboğa KK, Ali A, Rudrapal M et al (2022) Development of gold nanoparticle-based biosensors for COVID-19 diagnosis. Beni-Suef Univ J Basic Appl Sci 1:111

    Article  Google Scholar 

  59. Moitra P, Alafeef M, Dighe K, Frieman MB, Pan D (2020) Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 6:7617–7627

    Article  Google Scholar 

  60. Pramanik A, Gao Y, Patibandla S, Mitra D, McCandless MG et al (2021) The rapid diagnosis and effective inhibition of coronavirus using spike antibody attached gold nanoparticles. Nanoscale Adv 6:1588–1596

    Article  Google Scholar 

  61. Dykman LA, Staroverov SA, Fomin AS, Gabalov KP (2021) The potential of gold nanoparticles for coronavirus diagnosis and prophylaxis. In: Tuchin VV, Genina EA, eds. Saratov fall meeting 2020: optical and nanotechnologies for biology and medicine. SPIE, Saratov, Russian Federation, p 40

  62. Barcikowski S, Devesa F, Moldenhauer K (2009) Impact and structure of literature on nanoparticle generation by laser ablation in liquids. J Nanoparticle Res 8:1883–1893

    Article  Google Scholar 

  63. Gurunathan S, Park JH, Han JW, Kim J-H (2015) Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int J Nanomed 10:4203

    Article  CAS  Google Scholar 

  64. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR et al (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 10:515–519

    Article  Google Scholar 

  65. Chernousova S, Epple M (2013) Silver as Antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 6:1636–1653

    Article  Google Scholar 

  66. Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V et al (2011) Silver nanoparticles as potential antiviral agents. Molecules 10:8894–8918

    Article  Google Scholar 

  67. Wong KKY, Cheung SOF, Huang L, Niu J, Tao C et al (2009) Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem 7:1129–1135

    Article  Google Scholar 

  68. Cohen J (2020) Lab’s scramble to spot hidden coronavirus infections. Science

  69. Marimuthu S, Antonisamy AJ, Malayandi S, Rajendran K, Tsai P-C et al (2020) Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J Photochem Photobiol B 205:111823

    Article  CAS  PubMed  Google Scholar 

  70. Chen Y-N, Hsueh Y-H, Hsieh C-T, Tzou D-Y, Chang P-L (2016) Antiviral activity of graphene-silver nanocomposites against non-enveloped and enveloped viruses. Int J Environ Res Public Health 4:430

    Article  Google Scholar 

  71. AbdEllah NH, Gad SF, Muhammad K, E Batiha G, Hetta HF (2020) Nanomedicine as a promising approach for diagnosis, treatment, and prophylaxis against COVID-19. Nanomedicine 21:2085–2102

    Article  Google Scholar 

  72. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 3:209–217

    Article  Google Scholar 

  73. Karagoz S, Kiremitler NB, Sarp G, Pekdemir S, Salem S et al (2021) Antibacterial, antiviral, and self-cleaning mats with sensing capabilities based on electrospun nanofibers decorated with ZnO nanorods and Ag nanoparticles for protective clothing applications. ACS Appl Mater Interfaces 4:5678–5690

    Article  Google Scholar 

  74. Pilaquinga F, Morey J, Torres M, Seqqat R, Piña MDLN (2021) Silver nanoparticles as a potential treatment against SARS-COV-2: a review. WIREs Nanomed Nanobiotechnol 13(5):e1707

    Article  CAS  Google Scholar 

  75. Jeremiah SS, Miyakawa K, Morita T, Yamaoka Y, Ryo A (2020) Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem Biophys Res Commun 1:195–200

    Article  Google Scholar 

  76. He Q, Lu J, Liu N, Lu W, Li Y et al (2022) Antiviral properties of silver nanoparticles against SARS-CoV-2: effects of surface coating and particle size. Nanomaterials 6:990

    Article  Google Scholar 

  77. Allawadhi P, Singh V, Khurana A, Khurana I, Allwadhi S et al (2021) Silver nanoparticle based multifunctional approach for combating COVID-19. Sens Int 2:100101

    Article  PubMed  PubMed Central  Google Scholar 

  78. Huber D (2005) Synthesis, properties, and applications of iron nanoparticles. Small 5:482–501

    Article  Google Scholar 

  79. Fernández-Remolar DC (2015) Iron oxides, hydroxides and oxy-hydroxides. In: Gargaud M, Irvine WM, Amils R, Cleaves HJ, Pinti DL, et al., (eds.) Encyclopedia of astrobiology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1268–1270.

  80. Crist RM, Grossman JH, Patri AK, Stern ST, Dobrovolskaia MA et al (2013) Common pitfalls in nanotechnology: lessons learned from NCI’s nanotechnology characterization laboratory. Integr Biol 1:66–73

    Article  Google Scholar 

  81. Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C et al (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 9:2628–2635

    Article  Google Scholar 

  82. Murugan K, Wei J, Alsalhi MS, Nicoletti M, Paulpandi M et al (2017) Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors. Parasitol Res 2:495–502

    Article  Google Scholar 

  83. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 5:2673–2702

    Article  Google Scholar 

  84. Kumar R, Nayak M, Sahoo GC, Pandey K, Sarkar MC et al (2019) Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. J Infect Chemother 5:325–329

    Article  Google Scholar 

  85. Wiehe A, O’Brien JM, Senge MO (2019) Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 11:2565–2612

    Article  Google Scholar 

  86. Maisch T (2007) Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci 2:83–91

    Article  Google Scholar 

  87. Coyne DW (2009) Ferumoxytol for treatment of iron deficiency anemia in patients with chronic kidney disease. Expert Opin Pharmacother 15:2563–2568

    Article  Google Scholar 

  88. Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA et al (2020) Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano 6:6383–6406

    Article  Google Scholar 

  89. Nicola M, Alsafi Z, Sohrabi C, Kerwan A, Al-Jabir A et al (2020) The socio-economic implications of the coronavirus pandemic (COVID-19): a review. Int J Surg 78:185–193

    Article  PubMed  PubMed Central  Google Scholar 

  90. Russell P, Esser L, Hagemeyer CE, Voelcker NH (2023) The potential impact of nanomedicine on COVID-19-induced thrombosis. Nat Nanotechnol 1:11–22

    Article  Google Scholar 

  91. Johnstone TC, Suntharalingam K, Lippard SJ (2016) The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev 5:3436–3486

    Article  Google Scholar 

  92. Wang Z, Chen L, Huang C, Huang Y, Jia N (2017) Albumin-mediated platinum nanocrystals for in vivo enhanced computed tomography imaging. J Mater Chem B 19:3498–3510

    Article  Google Scholar 

  93. Doherty RE, Sazanovich IV, McKenzie LK, Stasheuski AS, Coyle R et al (2016) Photodynamic killing of cancer cells by a Platinum(II) complex with cyclometallating ligand. Sci Rep 1:22668

    Article  Google Scholar 

  94. Liu Y, Chen S, Zhong L, Wu G (2009) Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation. Radiat Phys Chem 4:251–255

    Article  Google Scholar 

  95. Madsen AT, Ahmed EH, Christensen CH, Fehrmann R, Riisager A (2011) Hydrodeoxygenation of waste fat for diesel production: study on model feed with Pt/alumina catalyst. Fuel 11:3433–3438

    Article  Google Scholar 

  96. Kasem KK (2012) Role of platinum in photoelectrochemical studies related to solar energy harvesting. Platin Met Rev 4:221–228

    Article  Google Scholar 

  97. Popok VN, Stepanov AL, Odzhaev VB (2005) Synthesis of silver nanoparticles by the ion implantation method and investigation of their optical properties. J Appl Spectrosc 2:229–234

    Article  Google Scholar 

  98. Wani IA, Ganguly A, Ahmed J, Ahmad T (2011) Silver nanoparticles: ultrasonic wave assisted synthesis, optical characterization and surface area studies. Mater Lett 3:520–522

    Article  Google Scholar 

  99. Shim I-K, Lee YI, Lee KJ, Joung J (2008) An organometallic route to highly monodispersed silver nanoparticles and their application to ink-jet printing. Mater Chem Phys 2–3:316–321

    Article  Google Scholar 

  100. Dong C, Zhang X, Cai H (2014) Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose. J Alloys Compd 583:267–271

    Article  CAS  Google Scholar 

  101. Poon W-L, Alenius H, Ndika J, Fortino V, Kolhinen V et al (2017) Nano-sized zinc oxide and silver, but not titanium dioxide, induce innate and adaptive immunity and antiviral response in differentiated THP-1 cells. Nanotoxicology 7:936–951

    Article  Google Scholar 

  102. Miyako E, Nagata H, Hirano K, Sakamoto K, Makita Y et al (2008) Photoinduced antiviral carbon nanohorns. Nanotechnology 7:075106

    Article  Google Scholar 

  103. Cuevas-Ferrando E, Randazzo W, Pérez-Cataluña A, Falcó I, Navarro D et al (2021) Platinum chloride-based viability RT-qPCR for SARS-CoV-2 detection in complex samples. Sci Rep 1:18120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarmistha Saha.

Ethics declarations

Conflict of interest

Istuti Saraswat, Sarmistha Saha, Anuja Mishra declare that we have no conflict of interest.

Ethical approval

This article does not contain any studies with human subjects or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraswat, I., Saha, S. & Mishra, A. A review of metallic nanostructures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Toxicol. Environ. Health Sci. 15, 315–324 (2023). https://doi.org/10.1007/s13530-023-00182-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-023-00182-9

Keywords

Navigation