Skip to main content
Log in

Hydrogen sulfide alleviates acrylamide-induced testicular toxicity in male rats

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

Testicular tissues and sperms are typically vulnerable to oxidative stress and inflammation. Despite functioning as a signaling molecule in different physiological and pathological processes, hydrogen sulfide (H2S) role in the reproductive system is not fully recognized. This study aimed to assess whether H2S could counteract the testicular damage that acrylamide (AC) causes in male rats.

Methods

Forty male rats were equally divided randomly into four groups: normal control, AC, H2S, and AC + H2S who received normal saline, 40 mg/Kg of AC, 200 µg/Kg of sodium hydrosulfide NaHS (H2S donor), and 40 mg/Kg of AC + 200 µg/Kg of NaHS by intraperitoneal injection for 14 consecutive days, respectively. Body and testes weights, sperm count and motility, lactate dehydrogenase isoenzyme-x (LDH-X), serum testosterone level, oxidative parameters, the expression level of inducible nitric oxide synthase (iNOS), inflammatory cytokines, and histopathological alterations were evaluated.

Results

The reduction in relative testicular weights, sperm count, and motility served as evidence of the harmful effects of AC. However, these values were reversed when H2S and AC were combined. Additionally, AC significantly decreased serum testosterone level, testicular LDH-X activity, superoxide dismutase, catalase, and reduced glutathione. While malondialdehyde, expression levels of iNOS protein and inflammatory cytokines (TNF-α, IL-1β, and IL-6) levels were elevated. Interestingly, the co-administration of H2S with AC reversed these values, demonstrating an opposing effect in the previous parameters.

Conclusion

H2S exhibited a protective effect in the rat model of testicular toxicity induced by AC, which may be associated with the suppression of iNOS expression, proinflammatory cytokines, and the inhibition of oxidative stress injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data available on request from corresponding author.The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

References

  1. Braun O, Coquery C, Kieffer J, Blondel F, Favero C, Besset C, Mesnager J, Voelker F, Delorme C, Matioszek D (2021) Spotlight on the life cycle of acrylamide-based polymers supporting reductions in environmental footprint: review and recent advances. Molecules 27:42. https://doi.org/10.3390/molecules27010042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee B-M, Kwon S, Cho YM, Kim K-B, Seo K, Min CS, Kim K (2019) Perspectives on trace chemical safety and chemophobia: risk communication and risk management. J Toxicol Environ Health A 82:186–199. https://doi.org/10.1080/15287394.2019.1618680

    Article  CAS  PubMed  Google Scholar 

  3. Paul V, Ezekiel R, Pandey R (2016) Acrylamide in processed potato products: progress made and present status. Acta Physiol Plant 38:1–23. https://doi.org/10.1007/s11738-016-2290-8

    Article  CAS  Google Scholar 

  4. Ciesarová Z, Kukurová K, Torbica A, Belović M, Horváthová J, Daško Ľ, Jelemenská V (2021) Acrylamide and 5-hydroxymethylfurfural in thermally treated non-wheat flours and respective breads. Food Chem 365:130491. https://doi.org/10.1016/j.foodchem.2021.130491

    Article  CAS  PubMed  Google Scholar 

  5. Kunnel SG, Subramanya S, Satapathy P, Sahoo I, Zameer F (2019) Acrylamide induced toxicity and the propensity of phytochemicals in amelioration: a review. Cent Nervous Syst Agents Med Chem Former Curr Med Chem-Cent Nervous Syst Agents 19:100–113. https://doi.org/10.2174/1871524919666190207160236

    Article  CAS  Google Scholar 

  6. Pennisi M, Malaguarnera G, Puglisi V, Vinciguerra L, Vacante M, Malaguarnera M (2013) Neurotoxicity of acrylamide in exposed workers. Int J Environ Res Public Health 10:3843–3854. https://doi.org/10.3390/ijerph10093843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kucukler S, Caglayan C, Darendelioğlu E, Kandemir FMJLS (2020) Morin attenuates acrylamide-induced testicular toxicity in rats by regulating the NF-κB, Bax/Bcl-2 and PI3K/Akt/mTOR signaling pathways. Life Sci 261:118301. https://doi.org/10.1016/j.lfs.2020.118301

    Article  CAS  PubMed  Google Scholar 

  8. Kandemir FM, Yıldırım S, Kucukler S, Caglayan C, Darendelioğlu E, Dortbudak MB (2020) Protective effects of morin against acrylamide-induced hepatotoxicity and nephrotoxicity: a multi-biomarker approach. Food Chem Toxicol 138:111190. https://doi.org/10.1016/j.fct.2020.111190

    Article  CAS  PubMed  Google Scholar 

  9. Al-Qahtani F, Arafah M, Sharma B, Siddiqi N (2017) Effects of alpha lipoic acid on acrylamide-induced hepatotoxicity in rats. Cell Mol Biol 63:1–6. https://doi.org/10.14715/cmb/2017.63.6.1

    Article  CAS  PubMed  Google Scholar 

  10. Pan X, Wu X, Yan D, Peng C, Rao C, Yan H (2018) Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs. Toxicol Lett 288:55–64. https://doi.org/10.1016/j.toxlet.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  11. Dasari S, Ganjayi M, Gonuguntla S, Kothapalli S, Konda P, Basha S, Kutagolla P, Meriga B (2018) Evaluation of biomarkers distress in acryla-mide-induced hepatic and nephrotoxicity of albino wistar rat. Adv Anim Vet Sci 6:427–435. https://doi.org/10.17582/journal.aavs/2018/6.10.427.435

    Article  Google Scholar 

  12. Giuffrè A, Vicente JBJOM, Longevity C (2018) Hydrogen sulfide biochemistry and interplay with other gaseous mediators in mammalian physiology. Oxid Med Cell Longev. https://doi.org/10.1155/2018/6290931

    Article  PubMed  PubMed Central  Google Scholar 

  13. Calabrese V, Scuto M, Salinaro AT, Dionisio G, Modafferi S, Ontario ML, Greco V, Sciuto S, Schmitt CP, Calabrese EJ, Peters V (2020) Hydrogen sulfide and carnosine: modulation of oxidative stress and inflammation in kidney and brain axis. Antioxidants (Basel) 9:1303. https://doi.org/10.3390/antiox9121303

    Article  CAS  PubMed  Google Scholar 

  14. Cao X, Xiong S, Zhou Y, Wu Z, Ding L, Zhu Y, Wood ME, Whiteman M, Moore PK, Bian J-s (2018) Renal protective effect of hydrogen sulfide in cisplatin-induced nephrotoxicity. Antioxid Redox Signal 29:455–470. https://doi.org/10.1089/ars.2017.7157

    Article  CAS  PubMed  Google Scholar 

  15. Fan H-N, Wang H-J, Yang-Dan C-R, Ren L, Wang C, Li Y-F, Deng Y (2013) Protective effects of hydrogen sulfide on oxidative stress and fibrosis in hepatic stellate cells. Mol Med Rep 7:247–253. https://doi.org/10.3892/mmr.2012.1153

    Article  CAS  PubMed  Google Scholar 

  16. Li Z, Polhemus DJ, Lefer DJ (2018) Evolution of hydrogen sulfide therapeutics to treat cardiovascular disease. Circ Res 123:590–600. https://doi.org/10.1161/CIRCRESAHA.118.311134

    Article  CAS  PubMed  Google Scholar 

  17. Goren I, Köhler Y, Aglan A, Pfeilschifter J, Beck K-F, Frank S (2019) Increase of cystathionine-γ-lyase (CSE) during late wound repair: hydrogen sulfide triggers cytokeratin 10 expression in keratinocytes. Nitric Oxide 87:31–42. https://doi.org/10.1016/j.niox.2019.03.004

    Article  CAS  PubMed  Google Scholar 

  18. Chu P, Lin L, Chen P, Su T, Lin C (2017) Negative association between acrylamide exposure and body composition in adults: NHANES, 2003–2004. Nutr Diabet 7:e246–e246. https://doi.org/10.1038/nutd.2016.48

    Article  CAS  Google Scholar 

  19. Burek J, Albee R, Beyer J, Bell T, Carreon R, Morden D, Wade C, Hermann E, Gorzinski S (1980) Subchronic toxicity of acrylamide administered to rats in the drinking water followed by up to 144 days of recovery. J Environ Pathol Toxicol 4:157–182

    CAS  PubMed  Google Scholar 

  20. Slade E, Williams L, Gagnon JJPR (2018) Hydrogen sulfide suppresses ghrelin secretion in vitro and delays postprandial ghrelin secretion while reducing appetite in mice. Physiol Rep 6:e13870. https://doi.org/10.14814/phy2.13870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ning JZ, Li W, Cheng F, Rao T, Yu WM, Ruan Y, Yuan R, Zhang XB, Du Y, Xiao CC (2018) The protective effects of GYY4137 on ipsilateral testicular injury in experimentally varicocele-induced rats. Exp Ther Med 15:433–439. https://doi.org/10.3892/etm.2017.5417

    Article  CAS  PubMed  Google Scholar 

  22. Yilmaz BO, Yildizbayrak N, Aydin Y, Erkan M (2017) Evidence of acrylamide-and glycidamide-induced oxidative stress and apoptosis in Leydig and Sertoli cells. Hum Exp Toxicol 36:1225–1235. https://doi.org/10.1177/0960327116686818

    Article  CAS  PubMed  Google Scholar 

  23. Sharpe R, Maddocks S, Millar M, Kerr J, Saunders P, McKinnell C (1992) Testosterone and spermatogenesis identification of stage-specific, androgen-regulated proteins secreted by adult rat seminiferous tubules. J Androl 13:172–184

    CAS  PubMed  Google Scholar 

  24. Wang J, Wang W, Li S, Han Y, Zhang P, Meng G, Xiao Y, Xie L, Wang X, Sha J (2018) Hydrogen sulfide as a potential target in preventing spermatogenic failure and testicular dysfunction. Antioxid Redox Signal 28:1447–1462. https://doi.org/10.1089/ars.2016.6968

    Article  CAS  PubMed  Google Scholar 

  25. Kostic T, Andric S, Maric D, Stojilkovic S, Kovacevic RJJE (1999) Involvement of inducible nitric oxide synthase in stress-impaired testicular steroidogenesis. J Endocrinol 163:409–416. https://doi.org/10.1677/joe.0.1630409

    Article  CAS  PubMed  Google Scholar 

  26. Yildizbayrak N, Erkan M (2018) Acrylamide disrupts the steroidogenic pathway in Leydig cells: possible mechanism of action. Toxicol Environ Chem 100:235–246. https://doi.org/10.1080/02772248.2018.1458231

    Article  CAS  Google Scholar 

  27. Chen H-J, Ngowi EE, Qian L, Li T, Qin Y-Z, Zhou J-J, Li K, Ji X-Y, Wu D-D (2021) Role of hydrogen sulfide in the endocrine system. Front Endocrinol. https://doi.org/10.3389/fendo.2021.704620

    Article  Google Scholar 

  28. Khanna S, Lakhera PC, Khandelwal S (2011) Interplay of early biochemical manifestations by cadmium insult in sertoli-germ coculture: an in vitro study. Toxicology 287:46–53. https://doi.org/10.1016/j.tox.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  29. Abd-Ellah M, Aly H, Mokhlis H, Abdel-Aziz A (2016) Quercetin attenuates di-(2-ethylhexyl) phthalate-induced testicular toxicity in adult rats. Hum Exp Toxicol 35:232–243. https://doi.org/10.1177/0960327115580602

    Article  CAS  PubMed  Google Scholar 

  30. Oyagbemi AA, Adedara IA, Saba AB, Farombi EO (2010) Role of oxidative stress in reproductive toxicity induced by co-administration of chloramphenicol and multivitamin-haematinics complex in rats. Basic Clin Pharmacol Toxicol 107:703–708. https://doi.org/10.1111/j.1742-7843.2010.00561.x

    Article  CAS  PubMed  Google Scholar 

  31. Corsello T, Komaravelli N, Casola A (2018) Role of hydrogen sulfide in NRF2-and sirtuin-dependent maintenance of cellular redox balance. Antioxidants 7:129. https://doi.org/10.3390/antiox7100129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beck K-F, Euler J, Eisel F, Beck M, Köhler Y, Sha LK, von Knethen A, Longen S, Pfeilschifter JJBP (2015) Cytokines induce protein kinase A-mediated signalling by a redox-dependent mechanism in rat renal mesangial cells. Biochem Pharmacol 93:362–369. https://doi.org/10.1016/j.bcp.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  33. O’Bryan MK, Schlatt S, Gerdprasert O, Phillips DJ, de Kretser DM, Hedger MP (2000) Inducible nitric oxide synthase in the rat testis: evidence for potential roles in both normal function and inflammation-mediated infertility. Biol Reprod 63:1285–1293. https://doi.org/10.1095/biolreprod63.5.1285

    Article  PubMed  Google Scholar 

  34. Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Cheung NS, Halliwell B, Moore PK (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem 90:765–768. https://doi.org/10.1111/j.1471-4159.2004.02617.x

    Article  CAS  PubMed  Google Scholar 

  35. Yang R, Jia Q, Ma S, Cui S, Liu X, Wang Y, Gao Q (2017) Effect of hydrogen sulfide on inducible nitric oxide synthase in kidneys of Type 1 diabetic rats. J Cent South Univ Med Sci 42:389–394. https://doi.org/10.11817/j.issn.1672-7347.2017.04.004

    Article  Google Scholar 

  36. Sanocka D, Jędrzejczak P, Szumała-Kaękol A, Frączek M, Kurpisz M (2003) Male genital tract inflammation: the role of selected interleukins in regulation of pro-oxidant and antioxidant enzymatic substances in seminal plasma. J Androl 24:448–455. https://doi.org/10.1002/j.1939-4640.2003.tb02693.x

    Article  PubMed  Google Scholar 

  37. Hong CY, Park JH, Ahn RS, Im SY, Choi H-S, Soh J, Mellon SH, Lee KJM, Biology C (2004) Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol Cell Biol 24:2593–2604. https://doi.org/10.1128/MCB.24.7.2593-2604.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsigos C, Papanicolaou DA, Kyrou I, Raptis SA, Chrousos GP (1999) Dose-dependent effects of recombinant human interleukin-6 on the pituitary-testicular axis. J Interferon Cytokine Res 19:1271–1276. https://doi.org/10.1089/107999099312948

    Article  CAS  PubMed  Google Scholar 

  39. Wallace JL (2007) Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol Sci 28:501–505. https://doi.org/10.1016/j.tips.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  40. Rios E, Szczesny B, Soriano FG, Olah G, Szabo CJ (2015) Hydrogen sulfide attenuates cytokine production through the modulation of chromatin remodeling. Int J Mol Med 35:1741–1746. https://doi.org/10.3892/ijmm.2015.2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yassa HA, George SM, Refaiy AERM, Moneim EM (2014) Camellia sinensis (green tea) extract attenuate acrylamide induced testicular damage in albino rats. Environ Toxicol 29:1155–1161. https://doi.org/10.1002/tox.21846

    Article  CAS  PubMed  Google Scholar 

  42. Azarbarz N, Shafiei Seifabadi Z, Moaiedi MZ, Mansouri E (2020) Assessment of the effect of sodium hydrogen sulfide (hydrogen sulfide donor) on cisplatin-induced testicular toxicity in rats. Environ Sci Pollut Res 27:8119–8128. https://doi.org/10.1007/s11356-019-07266-5

    Article  CAS  Google Scholar 

  43. Alturfan AA, Tozan-Beceren A, Sehirli AO, Demiralp E, Sener G, Omurtag GZ (2012) Resveratrol ameliorates oxidative DNA damage and protects against acrylamide-induced oxidative stress in rats. Mol Biol Rep 39:4589–4596. https://doi.org/10.1007/s11033-011-1249-5

    Article  CAS  PubMed  Google Scholar 

  44. Yokoi K, Uthus EO, Nielsen FH (2003) Nickel deficiency diminishes sperm quantity and movement in rats. Biol Trace Elem Res 93:141–154. https://doi.org/10.1385/BTER:93:1-3:141

    Article  CAS  PubMed  Google Scholar 

  45. Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278. https://doi.org/10.1016/0003-2697(78)90342-1

    Article  CAS  PubMed  Google Scholar 

  46. Beutler E, Yeh MK (1963) Erythrocyte glutathione reductase. Blood 21:573–585. https://doi.org/10.1182/blood.V21.5.573.573

    Article  CAS  PubMed  Google Scholar 

  47. Aebi H (1984) Catalase in vitro. In: Oxygen radicals in biological systems, vol 105. Methods in enzymology. Academic Press, pp 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

  48. Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854. https://doi.org/10.1016/s0006-291x(72)80218-3

    Article  CAS  PubMed  Google Scholar 

  49. Abdel-Bakky MS, Hammad MA, Walker LA, Ashfaq MK (2011) Silencing of tissue factor by antisense deoxyoligonucleotide prevents monocrotaline/LPS renal injury in mice. Arch Toxicol 85:1245–1256. https://doi.org/10.1007/s00204-011-0663-8

    Article  CAS  PubMed  Google Scholar 

  50. Bancroft JD, Gamble M (2008) Theory and practice of histological techniques. Sciences. https://doi.org/10.1016/C2015-0-00143-5

    Article  Google Scholar 

  51. Hozyen HF, Khalil HMA, Ghandour RA, Al-Mokaddem AK, Amer MS, Azouz RA (2020) Nano selenium protects against deltamethrin-induced reproductive toxicity in male rats. Toxicol Appl Pharmacol 408:115274. https://doi.org/10.1016/j.taap.2020.115274

    Article  CAS  PubMed  Google Scholar 

  52. Johnsen SG (1970) Testicular biopsy score count–a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones 1:2–25. https://doi.org/10.1159/000178170

    Article  CAS  PubMed  Google Scholar 

  53. Mirhoseini M, Talebpour Amiri F, Karimpour Malekshah AA, Rezanejad Gatabi Z, Ghaffari E (2017) Protective effects of melatonin on testis histology following acute torsion-detorsion in rats. Int J Reprod Biomed 15:141–146. https://doi.org/10.29252/ijrm.15.3.141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge with thanks Faculty of Pharmacy, Al-Azhar University, for technical and financial support. This study did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

HAM, AA conceived and designed the study. HAM, MHR, IGS, MGE, AAE, AA performed the practical experiments. EGK, MHG collected and analyzed data. HAM, MGE, AAE, AA, HSG wrote and revised the manuscript: All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ahmed A. El-Husseiny.

Ethics declarations

Conflict of interest

Hamada Ahmed Mokhlis, Mohammed Helmy Rashed, Ibrahim Ghalib Saleh, Mahmoud Gomaa Eldeib, Ahmed A. El-Husseiny, Emad Gamil Khidr, Maher H. Gomaa, Hesham S. Gad, and Ahmed Aglan declare that they have no conflicts of interest.

Ethical approval

All experimental procedures for animals in this study were conducted in accordance with the Guide for the Care and Use of Laboratory Animals prepared by the Institute of Laboratory Animal Resources for the National Research Council. Approval by the Institutional Animal Care and Use Committee of the Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt was obtained before the animal experiments were performed (Azhar-Pharmacy-2022–005).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhlis, H.A., Rashed, M.H., Saleh, I.G. et al. Hydrogen sulfide alleviates acrylamide-induced testicular toxicity in male rats. Toxicol. Environ. Health Sci. 15, 41–51 (2023). https://doi.org/10.1007/s13530-022-00156-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-022-00156-3

Keywords

Navigation