Skip to main content
Log in

Screening of PCDDs/Fs and DL-PCBs by AhR-CALUX bioassay in bovine milk and environment ash from India

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objectives

Persistent organic pollutants have great public concerns due to their wide distribution, physicochemical property, persistent in the environment and high toxicity level. PCDD/PCDFs and PCBs are produced unintentionally and occurs as a by-product in many chemical processes. Physicochemical and biological resistance of PCDD/Fs and DL-PCBs results in contamination of air, water, soil and foods. This study provides an overview of dioxins and dioxin-related compounds contamination in bovine milk and ash samples in south India, Tamil Nadu.

Methods

PCDD/Fs and DL-PCBs were analyzed from the bovine milk and ash samples collected from the urban and rural area of the South part of India, Tamil Nadu using chemically activated luciferase expression (CALUX) assay. The CALUX assay method validation has simplified the monitoring of dioxin and dioxin like-PCBs contamination in the environment.

Results

The total toxic equivalency (TEQ) for PCDD/Fs and DL-PCBs in the bovine milk samples were ranged from 0.028 to 7.331-pg TEQ/g fat. Some of the districts showed higher PCDD/Fs and DL-PCBs concentration in milk and ash samples. Further, BM14 (7.331 pg-TEQ/g fat) and BM21 (6.406 pg-TEQ/g fat) sampling sites showed exceed level of PCDD/Fs and DL-PCBs than WHO regulation limits (6 pg-TEQ/g fat). Similarly, total dioxins and DL-PCBs concentration in the ash sample were between 0.003 and 1 ng TEQ/g. Samples from AS3 (1.2 ng-TEQ/g) and AS11 (1.06 ng-TEQ/g) showed higher total dioxins and DL-PCBs level among other sampling sites.

Conclusion

This study found distribution of PCDD/Fs and DL-PCBs in bovine milk and ash samples collected from nine different major districts namely, which were highly populated and industrialized districts of South India (Tamil Nadu). Higher PCDD/Fs concentration was found in both bovine milk and ash samples compared to DL-PCBs. However, there was no positive correlation between bovine milk and ash samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Kim D-G, Kim M, Jang J-H, Bong YH, Kim J-H (2013) Monitoring of environmental contaminants in raw bovine milk and estimates of dietary intakes of children in South Korea. Chemosphere 93:561–566

    Article  CAS  PubMed  Google Scholar 

  2. Lauby-Secretan B et al (2013) Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncology 14:287–288

    Article  CAS  PubMed  Google Scholar 

  3. Esposito M et al (2010) A survey of dioxins (PCDDs and PCDFs) and dioxin-like PCBs in sheep and goat milk from Campania, Italy. Food Addit Contam Part B 3:58–63

    Article  CAS  Google Scholar 

  4. Esposito M et al (2009) Levels and congener profiles of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like polychlorinated biphenyls in cow’s milk collected in Campania, Italy. Chemosphere 77:1212–1216

    Article  CAS  PubMed  Google Scholar 

  5. Anwer F, Chaurasia S, Khan AA (2016) Hormonally active agents in the environment: a state-of-the-art review. Rev Environ Health 31:415–433

    Article  CAS  PubMed  Google Scholar 

  6. Eskenazi B et al (2018) The Seveso accident: A look at 40 years of health research and beyond. Environ Int 121:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ames J et al (2019) Prenatal dioxin exposure and neuropsychological functioning in the Seveso Second Generation Health Study. Int J Hyg Environ Health 222:425–433

    Article  CAS  PubMed  Google Scholar 

  8. Vinceti M et al (2018) Adverse pregnancy outcomes in women with changing patterns of exposure to the emissions of a municipal waste incinerator. Environ Res 164:444–451

    Article  CAS  PubMed  Google Scholar 

  9. Boffetta P, Mundt KA, Adami H-O, Cole P, Mandel JS (2011) TCDD and cancer: a critical review of epidemiologic studies. Crit Rev Toxicol 41:622–636

    Article  PubMed  PubMed Central  Google Scholar 

  10. Udovic M, Lestan D (2009) Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching. Chemosphere 74:1367–1373

    Article  CAS  PubMed  Google Scholar 

  11. Domingo JL, García F, Nadal M, Schuhmacher M (2017) Autopsy tissues as biological monitors of human exposure to environmental pollutants. A case study: Concentrations of metals and PCDD/Fs in subjects living near a hazardous waste incinerator. Environ Res 154:269–274

    Article  CAS  PubMed  Google Scholar 

  12. Bertocchi L, Ghidini S, Fedrizzi G, Lorenzi V (2015) Case-study and risk management of dioxins and PCBs bovine milk contaminations in a high industrialized area in Northern Italy. Environ Sci Pollut Res 22:9775–9785

    Article  CAS  Google Scholar 

  13. Authority EFS (2012) Update of the monitoring of levels of dioxins and PCBs in food and feed. EFSA J 10:2832

    Google Scholar 

  14. Kiviranta H, Ovaskainen M-L, Vartiainen T (2004) Market basket study on dietary intake of PCDD/Fs, PCBs, and PBDEs in Finland. Environ Int 30:923–932

    Article  CAS  PubMed  Google Scholar 

  15. Bocio A, Domingo JL (2005) Daily intake of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDFs) in foodstuffs consumed in Tarragona, Spain: a review of recent studies (2001–2003) on human PCDD/PCDF exposure through the diet. Environ Res 97:1–9

    Article  CAS  PubMed  Google Scholar 

  16. Croes K et al (2013) Determination of PCDD/Fs, PBDD/Fs and dioxin-like PCBs in human milk from mothers residing in the rural areas in Flanders, using the CALUX bioassay and GC-HRMS. Talanta 113:99–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. García-Bermejo Á et al (2015) Triple quadrupole tandem mass spectrometry: A real alternative to high resolution magnetic sector instrument for the analysis of polychlorinated dibenzo-p-dioxins, furans and dioxin-like polychlorinated biphenyls. Anal Chim Acta 889:156–165

    Article  PubMed  CAS  Google Scholar 

  18. Lv P, Zheng M, Liu G, Liu W, Xiao K (2011) Estimation and characterization of PCDD/Fs and dioxin-like PCBs from Chinese iron foundries. Chemosphere 82:759–763

    Article  CAS  PubMed  Google Scholar 

  19. Subedi B, Usenko S (2012) Enhanced pressurized liquid extraction technique capable of analyzing polychlorodibenzo-p-dioxins, polychlorodibenzofurans, and polychlorobiphenyls in fish tissue. J Chromatogr A 1238:30–37

    Article  CAS  PubMed  Google Scholar 

  20. Kanan S, Samara F (2018) Dioxins and furans: a review from chemical and environmental perspectives. Trends Environ Anal Chem 17:1–13

    Article  CAS  Google Scholar 

  21. Godliauskienė R, Tamošiūnas V, Naujalis E (2017) Polychlorinated dibenzo-p-dioxins/furans and dioxin-like polychlorinated biphenyls in food and feed in the Lithuanian market. Toxicol Environ Chem 99:65–77

    Article  CAS  Google Scholar 

  22. González N, Marquès M, Nadal M, Domingo JL (2018) Levels of PCDD/Fs in foodstuffs in Tarragona County (Catalonia, Spain): spectacular decrease in the dietary intake of PCDD/Fs in the last 20 years. Food Chem Toxicol 121:109–114

    Article  PubMed  CAS  Google Scholar 

  23. Lorenzi V et al (2020) PCDD/Fs, DL-PCBs, and NDL-PCBs in dairy cows: carryover in milk from a controlled feeding study. J Agric Food Chem 68:2201–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lake IR et al (2013) Seasonal variations in the levels of PCDD/Fs, PCBs and PBDEs in cows’ milk. Chemosphere 90:72–79

    Article  CAS  PubMed  Google Scholar 

  25. International Agency for Research on Cancer (1997) Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. IARC Monog Evalu Carcinog Risks Humans 69:228–238.

  26. Han D, Nagy SR, Denison MS (2004) Comparison of recombinant cell bioassays for the detection of Ah receptor agonists. BioFactors 20:11–22

    Article  CAS  PubMed  Google Scholar 

  27. Chou I-C, Wu Y-L, Wang L-C, Chang-Chien G-P, Lee H (2009) Metal interference on luciferase activity induced by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in bioassays of recombinant mouse hepatoma cells. J Hazard Mater 165:881–885

    Article  CAS  PubMed  Google Scholar 

  28. Kewley RJ, Whitelaw ML, Chapman-Smith A (2004) The mammalian basic helix–loop–helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol 36:189–204

    Article  CAS  PubMed  Google Scholar 

  29. Chapman-Smith A, Whitelaw ML (2006) Novel DNA binding by a basic helix-loop-helix protein: the role of the dioxin receptor PAS domain. J Biol Chem 281:12535–12545

    Article  CAS  PubMed  Google Scholar 

  30. Chao H-R et al (2006) Arsenic inhibits induction of cytochrome P450 1A1 by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in human hepatoma cells. J Hazard Mater 137:716–722

    Article  CAS  PubMed  Google Scholar 

  31. Mimura J, Ema M, Sogawa K, Fujii-Kuriyama Y (1999) Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes Dev 13:20–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmidt JV, Bradfield CA (1996) Ah receptor signaling pathways. Annu Rev Cell Dev Biol 12:55–89

    Article  CAS  PubMed  Google Scholar 

  33. Jambeck JR et al (2015) Plastic waste inputs from land into the ocean. Science 347:768–771

    Article  CAS  PubMed  Google Scholar 

  34. Barnes DK, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans Royal Society B: Biol Sci 364:1985–1998

    Article  CAS  Google Scholar 

  35. Chou I-C et al (2008) Validation of the CALUX bioassay as a screening and semi-quantitative method for PCDD/F levels in cow’s milk. J Hazard Mater 154:1166–1172

    Article  CAS  PubMed  Google Scholar 

  36. Esposito M et al (2010) Contamination levels and congener distribution of PCDDs, PCDFs and dioxin-like PCBs in buffalo’s milk from Caserta province (Italy). Chemosphere 79:341–348

    Article  CAS  PubMed  Google Scholar 

  37. Adekunte AO, Tiwari BK, O’Donnell CP (2010) Exposure assessment of dioxins and dioxin-like PCBs in pasteurised bovine milk using probabilistic modelling. Chemosphere 81:509–516

    Article  CAS  PubMed  Google Scholar 

  38. Sapkota AR, Lefferts LY, McKenzie S, Walker P (2007) What do we feed to food-production animals? A review of animal feed ingredients and their potential impacts on human health. Environ Health Perspect 115:663–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoogenboom R et al (2010) Kaolinic clay derived PCDD/Fs in the feed chain from a sorting process for potatoes. Chemosphere 78:99–105

    Article  CAS  PubMed  Google Scholar 

  40. Turrio-Baldassarri L et al (2009) PCB, PCDD and PCDF contamination of food of animal origin as the effect of soil pollution and the cause of human exposure in Brescia. Chemosphere 76:278–285

    Article  CAS  PubMed  Google Scholar 

  41. Rychen G, Jurjanz S, Toussaint H, Feidt C (2008) Dairy ruminant exposure to persistent organic pollutants and excretion to milk. Animal Int J Animal Biosci 2:312

    Article  CAS  Google Scholar 

  42. Brambilla G et al (2008) PCDD and PCDF depletion in milk from dairy cows according to the herd metabolic scenario. Chemosphere 73:S216–S219

    Article  CAS  PubMed  Google Scholar 

  43. Vromman V et al (2012) Evaluation of the use of CALUX results for dioxins and dioxin-like PCBs analysis for quantitative human exposure assessments. Food Control 27:314–321

    Article  CAS  Google Scholar 

  44. Fattore E, Fanelli R, Turrini A, Di Domenico A (2006) Current dietary exposure to polychlorodibenzo-p-dioxins, polychlorodibenzofurans, and dioxin-like polychlorobiphenyls in Italy. Mol Nutr Food Res 50:915–921

    Article  CAS  PubMed  Google Scholar 

  45. Li J-G, Wu Y-N, Zhang L, Zhao Y-F (2007) Dietary intake of polychlorinated dioxins, furans and dioxin-like polychlorinated biphenyls from foods of animal origin in China. Food Addit Contam 24:186–193

    Article  CAS  PubMed  Google Scholar 

  46. Bilau M et al (2008) Dietary exposure to dioxin-like compounds in three age groups: results from the Flemish environment and health study. Chemosphere 70:584–592

    Article  CAS  PubMed  Google Scholar 

  47. Windal I et al (2005) Validation and interpretation of CALUX as a tool for the estimation of dioxin-like activity in marine biological matrixes. Environ Sci Technol 39:1741–1748

    Article  CAS  PubMed  Google Scholar 

  48. Durand B et al (2008) Levels of PCDDs, PCDFs and dioxin-like PCBs in raw cow’s milk collected in France in 2006. Chemosphere 70:689–693

    Article  CAS  PubMed  Google Scholar 

  49. Hoogenboom RL et al (2015) Carry-over of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in dairy cows fed smoke contaminated maize silage or sugar beet pulp. Chemosphere 137:214–220

    Article  CAS  PubMed  Google Scholar 

  50. Slobs W, Olling M, Derks H, De Jong A (1995) Congener-specific bioavailability of PCDD/Fs and coplanar PCBs in cows: laboratory and field measurements. Chemosphere 31:3827–3838

    Article  Google Scholar 

  51. Hoogenboom L, Hoffer S, Mennen M, Morgenstern P, Traag W In: Presentation 32nd international symposium on halogenated organic pollutants. pp 26–31

  52. Thanner G, Moche W (2004) PCDD/F and PCB levels in Austrian cow’s milk. Organohal Comp 66:2103–2106

    Google Scholar 

  53. Schmid P, Gujer E, Zennegg M, Studer C (2003) Temporal and local trends of PCDD/F levels in cow’s milk in Switzerland. Chemosphere 53:129–136

    Article  CAS  PubMed  Google Scholar 

  54. Serpe FP, Scaramuzzo A, Maglio P, Lambiase S, Esposito M (2015) Monitoring plan on PCDD/Fs and DL-PCBs milk contamination in Campania region (Italy). Int J Anal Mass Spectrom Chromatogr 3:32

    Article  CAS  Google Scholar 

  55. Ingelido AM et al (2009) Levels and profiles of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and polychlorinated biphenyls in feedstuffs and milk from farms in the vicinity of incineration plants in Tuscany, Italy. Arch Environ Contam Toxicol 57:397–404

    Article  CAS  PubMed  Google Scholar 

  56. European Commission (2006) Commission Regulation of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs, 1881/2006/EC. Official J

  57. Yang M, Park MS, Lee HS (2006) Endocrine disrupting chemicals: human exposure and health risks. J Environ Sci Health C 24:183–224

    Article  CAS  Google Scholar 

  58. Mari M, Nadal M, Schuhmacher M, Domingo JL (2009) Exposure to heavy metals and PCDD/Fs by the population living in the vicinity of a hazardous waste landfill in Catalonia, Spain: Health risk assessment. Environ Int 35:1034–1039

    Article  CAS  PubMed  Google Scholar 

  59. Davoli E et al (2010) Waste management health risk assessment: A case study of a solid waste landfill in South Italy. Waste Manage 30:1608–1613

    Article  CAS  Google Scholar 

  60. Wu S et al (2016) Dioxin distribution characteristics and health risk assessment in different size particles of fly ash from MSWIs in China. Waste Manage 50:113–120

    Article  CAS  Google Scholar 

  61. Chang Y-M et al (2011) Characteristics of PCDD/F content in fly ash discharged from municipal solid waste incinerators. J Hazard Mater 192:521–529

    Article  CAS  PubMed  Google Scholar 

  62. Colapicchioni V et al (2020) Environmental impact of co-combustion of polyethylene wastes in a rice husks fueled plant: evaluation of organic micropollutants and PM emissions. Sci Total Environ 716:135354

    Article  CAS  PubMed  Google Scholar 

  63. Masto RE et al (2015) PAHs and potentially toxic elements in the fly ash and bed ash of biomass fired power plants. Fuel Process Technol 132:139–152

    Article  CAS  Google Scholar 

  64. Cobo M, Gálvez A, Conesa JA, de Correa CM (2009) Characterization of fly ash from a hazardous waste incinerator in Medellin, Colombia. J Hazardous Mater 168:1223–1232

    Article  CAS  Google Scholar 

  65. He P-J, Zhang H, Zhang C-G, Lee D-J (2004) Characteristics of air pollution control residues of MSW incineration plant in Shanghai. J Hazard Mater 116:229–237

    Article  CAS  PubMed  Google Scholar 

  66. Yasuhara A, Katami T (2007) Leaching behavior of polychlorinated dibenzo-p-dioxins and furans from the fly ash and bottom ash of a municipal solid waste incinerator. Waste Manage 27:439–447

    Article  CAS  Google Scholar 

  67. Chang M-B, Chung Y-T (1998) Dioxin contents in fly ashes of MSW incineration in Taiwan. Chemosphere 36:1959–1968

    Article  CAS  PubMed  Google Scholar 

  68. Pan Y et al (2013) Characteristics of dioxins content in fly ash from municipal solid waste incinerators in China. Chemosphere 92:765–771

    Article  CAS  PubMed  Google Scholar 

  69. Chen T et al (2008) Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in China. J Hazard Mater 150:510–514

    Article  CAS  PubMed  Google Scholar 

  70. Sun J et al (2017) PCDD/Fs distribution characteristics and health risk assessment in fly ash discharged from MSWIs in China. Ecotoxicol Environ Saf 139:83–88

    Article  CAS  PubMed  Google Scholar 

  71. Jin Y et al (2003) Dioxins contents in fly ash of MSW incinerator in three city. Huan jing ke xue= Huanjing kexue 24:21–25

    CAS  PubMed  Google Scholar 

  72. Liu G, Jiang X, Wang M, Dong S, Zheng M (2015) Comparison of PCDD/F levels and profiles in fly ash samples from multiple industrial thermal sources. Chemosphere 133:68–74

    Article  CAS  PubMed  Google Scholar 

  73. Hsieh Y-K, Chen W-S, Zhu J, Wu Y-J, Huang Q (2018) Health risk assessment and correlation analysis on PCDD/FS in the fly ash from a municipal solid waste incineration plant. Aerosol Air Qual Res 18:734–748

    Article  CAS  Google Scholar 

  74. Wu J-L et al (2014) Polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) emission behavior during incineration of laboratory waste Part 1: Emission profiles obtained using chemical assay and bioassay. Aerosol Air Qual Res 14:1199–1205

    Article  CAS  Google Scholar 

  75. Li J et al (2016) Composition profiles and health risk of PCDD/F in outdoor air and fly ash from municipal solid waste incineration and adjacent villages in East China. Sci Total Environ 571:876–882

    Article  CAS  PubMed  Google Scholar 

  76. Kumar S, Segen J (Google Patents, 2001)

  77. Sakthivel S, Balasubramanian P, Nakamura M, Ko S, Chakraborty P (2016) CALUX bioassay: a cost-effective rapid screening technique for screening dioxins like compounds. Rev Environ Health 31:149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank to HIYOSHI Corporation (Japan), to provide facilities and support for the entire research work. A special thanks to Dr. R. Babu Rajendran (Department of Environmental Biotechnology, Bharathidasan University) providing this opportunity to accomplish the work in Japan.

Funding

This full work carried out and funded by Hiyoshi Corporation, 908, Kitanosho-Cho, Omihachiman, Shiga, Japan.

Author information

Authors and Affiliations

Authors

Contributions

MM contributed to investigation, data curation, validation and review, SS contributed to investigation, data curation, validation and writing—original draft, MN contributed to method validation and investigation, SK contributed to methodology, visualization and investigation, MG contributed to visualization, investigation and formal analysis, KV contributed to writing—review, edit, method validation and supervision.

Corresponding author

Correspondence to Krishnamoorthi Vimalkumar.

Ethics declarations

Conflict of interest

Murugasamy Mayilsamy, Seethappan Sangeetha, Masafumi Nakamura, Shunkei Ko, Muthusamy Govarthanan, and Krishnamoorthi Vimalkumar declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human subjects or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayilsamy, M., Sangeetha, S., Nakamura, M. et al. Screening of PCDDs/Fs and DL-PCBs by AhR-CALUX bioassay in bovine milk and environment ash from India. Toxicol. Environ. Health Sci. 14, 223–234 (2022). https://doi.org/10.1007/s13530-022-00133-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-022-00133-w

Keywords

Navigation