Skip to main content

Advertisement

Log in

Behavioural toxicity and respiratory distress in early life and adult stage of walking catfish Clarias batrachus (Linnaeus) under acute fluoride exposures

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

Toxicant-induced behavioural changes reflect underlying physiological deficiencies that can be utilized to predict ecological risks. The present investigation was undertaken to determine the toxic impact of sodium fluoride on the juvenile and adult size group of Clarias batrachus (Order: Siluriformes; Family: Clariidae).

Methods

To determine the LOEC, NOEC, and MATC for both size groups alongside the 96h lethal concentration (LC50), exposure concentration of sodium fluoride i.e., 180, 200, 220, 240, 260, 280, 300, 320, 340, 360 and 380 mg/l for juvenile fish and 340, 360, 380, 400, 420, 440, 460, 480, 500 and 520 mg/l for adult fish were used. The 96h (LC50) for both size groups were found to be 277.023 and 433.605 mg/l respectively. Safe-level exposures of fluoride to fish was also estimated to determine the ecological risk assessment for the fish.

Results

Ethological responses i.e., air gulping, body orientation, swimming, hyperactivity, mucus secretion, body balance, and colour and schooling tendency, etc. varied across life-stages. Adults exhibited more adaptive behavioural responses compared to juveniles with elevated exposures. Buccal and opercular movements of the exposed fish were significantly higher than the control group, with a higher oxygen consumption rate at elevated fluoride exposures.

Conclusion

Study findings highlight the potential of elevated fluoride levels in the environment to elicit varied behavioural responses in adult and early-staged fishes, thus increasing risks of disrupted adaptive capacity and the likelihood of significant mortality in the wild. Life-stage specific responses to fluoride exposures implicate under-developed organ-system, physiology and morphology in juveniles compared to adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adeogun A, Babatunde T, Chukwuka A (2013) Evaluation of response patterns in somatic and otolith features of laboratory-reared and wild Clarias exposed to industrial effluent. Res J Appl Sci Eng Technol 5:626–634

    CAS  Google Scholar 

  2. Adebayo OL, Adenuga GA (2012) Biochemical changes in the liver and pancreas of well-fed and protein undernourished rats following fluoride administration. Asian J Appl Sci 5:215–223

  3. Adeogun A, Chukwuka A (2011) Effect of textile factory effluent on otolith and somatic growth parameters in Clarias gariepinus. Zoologist 9:70–77

    Google Scholar 

  4. Aguirre-Sierra A, Alonso A, Camargo JA (2013) Fluoride bioaccumulation and toxic effects on the survival and behavior of the endangered white-clawed crayfish Austropotamobius pallipes (Lereboullet). Arch Environ Contam Toxicol 65(2):244–250

  5. Al-Attar AM (2005) Biochemical effects of short-term cadmium exposure on the freshwater fish, Oreochromis niloticus

  6. Allen T, Awasthi A, Rana S (2004) Fish chromatophores as biomarkers of arsenic exposure. Environ Biol Fishes 71(1):7–11

    Google Scholar 

  7. APHA (2015) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, D.C.

    Google Scholar 

  8. Bagale M, Rao K, Rokade A, Shah N (2011) Sodium fluoride induced histopathological changes in oesophagus and intestine of freshwater fisk, Tilapia mossambica (Oreochromis mossambicus). J Exp Zool India 14(1):203–208

    Google Scholar 

  9. Bajpai S, Tripathi M (2010) Effect of fluoride on growth bioindicators in stinging Catfish, heteropneustes fossilis (bloch). Fluoride 43(4):232–236

    CAS  Google Scholar 

  10. Bajpai S, Tripathi M (2012) Alteration in pigmentation after fluoride exposure in stinging catfish, Heteropneustes fossilis (Bloch). J Zool 1:47–52

    Google Scholar 

  11. Bansal S, Asthana S (2018) Biologically essential and non-essential elements causing toxicity in environment. Environ Anal Toxicol, S 8(2)

  12. Baruah B, Das M (2002) Study on behavioural responses of fish Heteropneustes fossilis exposed to paper mill effluent. Indian J Environ Ecoplan 6(2):263–266

    Google Scholar 

  13. Beitinger TL, Freeman L (1983) Behavioral avoidance and selection responses of fishes to chemicals. Residue reviews, 35–55

  14. Bentivegna CS, Piatkowski T (1998) Effects of tributyltin on medaka (Oryzias latipes) embryos at different stages of development. Aquat Toxicol 44(1–2):117–128

    CAS  Google Scholar 

  15. Brodin T, Piovano S, Fick J, Klaminder J, Heynen M, Jonsson M (2014) Ecological effects of pharmaceuticals in aquatic systems—impacts through behavioural alterations. Philos Trans Royal Soc B Biol Sci 369(1656):20130580

    Google Scholar 

  16. Brown C, Laland K, Krause J (2011) Fish cognition and behavior. John Wiley & Sons, Hoboken

    Google Scholar 

  17. Burdick G (1967) Use of bioassays in determining levels of toxic wastes harmful to aquatic organisms. In: American Fisheries Society Symposium. p 3–12

  18. Cagauan AG, Galaites MC, Fajardo LJ (2004) Evaluation of botanical piscicides on Nile tilapia Oreochromis niloticus L. and mosquito fish Gambusia affinis Baird and Girard. In: Proceedings on ISTA. p 12–16

  19. Camargo JA (2003) Fluoride toxicity to aquatic organisms: a review. Chemosphere 50(3):251–264

    PubMed  Google Scholar 

  20. Cao J, Chen J, Xie L, Wang J, Feng C, Song J (2015) Protective properties of sesamin against fluoride induced oxidative stress and apoptosis in kidney of carp (Cyprinus carpio) via JNK signaling pathway. Aquat Toxicol 167:180–190

  21. Cardeilhac PT, Whitaker BR (1988) Copper treatments: uses and precautions. Vet Clin North Am Small Anim Pract 18(2):435–448

    CAS  PubMed  Google Scholar 

  22. CCRM, C. C. o. R. E. M. (1991) Canadian water quality guidelines: Appendix XXI

  23. Chaudhary U, Rathod V, Vankhede G (2001) Effect of water extract of the bark of Buchanania lanzan linn. On behaviour and chromatophores of a fresh water fish, Labeo rohita. J Environ Biol 22(3):229–231

    CAS  PubMed  Google Scholar 

  24. Chirumari K, Reddy PK (2007) Dose-dependent effects of fluoride on neurochemical milieu in the hippocampus and neocortex of rat brain. Fluoride 40(2):101–110

    CAS  Google Scholar 

  25. Chondar S (1999) Biology of finfish and shellfish. SCSC Publishers (India), West Bengal

    Google Scholar 

  26. Chukwuka A, Ogbeide O, Uhunamure G (2019) Gonad pathology and intersex severity in pelagic (Tilapia zilli) and benthic (Neochanna diversus and Clarias gariepinus) species from a pesticide-impacted agrarian catchment, south-south Nigeria. Chemosphere 225:535–547. https://doi.org/10.1016/j.chemosphere.2019.03.073

    Article  CAS  PubMed  Google Scholar 

  27. CWQC (1972) A report of the committee on the water quality criteria. Ecological Research Series. EPA-R3-73-003

  28. Dec K, Łukomska A, Maciejewska D, Jakubczyk K, Baranowska-Bosiacka I, Chlubek D, Wąsik A, Gutowska I (2017) The influence of fluorine on the disturbances of homeostasis in the central nervous system. Biol Trace Elem Res 177(2):224–234

    CAS  PubMed  Google Scholar 

  29. Del Piero S, Masiero L, Casellato S (2014) Toxicity and bioaccumulation of fluoride ion on Branchiura sowerbyi, Beddard, (Oligochaeta, Tubificidae). Zoosymposia 9:44–50

    Google Scholar 

  30. Dell’Omo G (2002) Behavioural ecotoxicology. John Wiley & Sons, Hoboken

    Google Scholar 

  31. Dhara K, Saha NC, Maiti AK (2017) Studies on acute and chronic toxicity of cadmium to freshwater snail Lymnaea acuminata (Lamarck) with special reference to behavioral and hematological changes. Environ Sci Pollut Res 24(35):27326–27333

    CAS  Google Scholar 

  32. Dhara K, Saha S, Panigrahi AK, Saha NC (2020) Sensitivity of the freshwater tropical oligochaete, Branchiura sowerbyi (Beddard, 1892) to the grey list metal Zinc. Int J Life Sci 8(1):93–101

    Google Scholar 

  33. Dhara K, Saha S, Pal P, Chukwuka AV, Panigrahi AK, Saha NC, Faggio C (2021) Biochemical, physiological (haematological, oxygen-consumption rate) and behavioural effects of mercury exposures on the freshwater snail, Bellamya bengalensis. Comp Biochem Physiol C: Toxicol Pharmacol 251:109195

    Google Scholar 

  34. Dube P, Hosetti B (2010) Behavior surveillance and oxygen consumption in the freshwater fish Labeo rohita (Hamilton) exposed to sodium cyanide. Biotech Anim Husb 26(1–2):91–103

    Google Scholar 

  35. Edwards RW, Brown VM (1966) Pollution and fisheries. Institute of sewage purification. Annu Conf 1:49–55

  36. EIFAC, E. I. F. A. C. W. P. o. W. Q. C. f. E. F. F. (1984) Water Quality Criteria for European Freshwater Fish: Report on Nickel and Freshwater Fish. Food & Agriculture Org

  37. Frye C, Bo E, Calamandrei G, Calza L, Dessì-Fulgheri F, Fernández M, Fusani L, Kah O, Kajta M, Le Page Y (2012) Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J Neuroendocrinol 24(1):144–159

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gerhardt A (2007) Importance of exposure route for behavioural responses in Lumbriculus variegatus Müller (Oligochaeta: Lumbriculida) in short-term exposures to Pb. Environ Sci Pollut Res-Int 14(6):430–434

    CAS  PubMed  Google Scholar 

  39. Gheorghe S, Stoica C, Vasile GG, Nita-Lazar M, Stanescu E, Lucaciu IE (2017) Metals toxic effects in aquatic ecosystems: modulators of water quality. Water quality:60–89

  40. Giesy JP, Graney RL (1989) Recent developments in and intercomparisons of acute and chronic bioassays and bioindicators, Environmental bioassay techniques and their application. Springer, Berlin, pp 21–60

    Google Scholar 

  41. Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. John Wiley & Sons, Hoboken

    Google Scholar 

  42. Gopalakrishnan S, Thilagam H, Raja PV (2008) Comparison of heavy metal toxicity in life stages (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroides elegans. Chemosphere 71(3):515–528

    CAS  PubMed  Google Scholar 

  43. Gupta S, Poddar AN (2014) Sodium fluori de toxicity in the fresh water cat fish clarias ba trachus (Linn.): effects on the erythrocyte morphology and antioxidant enzymes. Res J Environ Toxicol 8(2):68–76

    Google Scholar 

  44. Halappa R, David M (2009) Behavioral responses of the freshwater fish, Cyprinus carpio (Linnaeus) following sublethal exposure to chlorpyrifos. Turkish Journal of Fisheries Aquatic Sciences, 9(2)

  45. Hamilton PB, Rolshausen G, Uren Webster TM, Tyler CR (2017) Adaptive capabilities and fitness consequences associated with pollution exposure in fish. Philosop Trans Royal Soc B Biol Sci 372(1712):20160042

    Google Scholar 

  46. Hemens J, Warwick R, Oliff W (1975) Effect of extended exposure to low fluoride concentration on estuarine fish and crustacea. Progress in water Technology

  47. Huang H, Huang C, Wang L, Ye X, Bai C, Simonich MT, Dong Q (2010) Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (PFOS). Aquat Toxicol 98(2):139–147

  48. International Joint Commission (IJC) (1977) Transboundary implications of the Garrison diversion unit: an IJC report to the governments of Canada and the United States

  49. Ismail SWM, Dahalan FA, Zakaria A, Shakaff AYM, Ahmad SA, Abd Shukor MY, Sabullah MK, Khalil KA, Ab Jalil MF (2018) The acute toxicity of the metaldehyde on the climbing perch. In: E3S Web of Conferences. p 02031

  50. Jacquin L, Petitjean Q, Côte J, Laffaille P, Jean S (2020) Effects of pollution on fish behavior, personality, and cognition: some research perspectives. Front Ecol Evol 8:86

    Google Scholar 

  51. Jerome FC, Hassan A, Chukwuka AV (2020) Metalloestrogen uptake, antioxidant modulation and ovotestes development in Callinectes amnicola (blue crab): a first report of crustacea intersex in the Lagos lagoon (Nigeria). Sci Total Environ 704:135235

    CAS  PubMed  Google Scholar 

  52. Jerome FC, Hassan AA, Chukwuka AV (2017) Sex-specific affinity for redox-active metals influences antioxidant responses of Callinectes amnicola (blue crab) populations in littoral and open water habitats of a tropical coastal lagoon. Marine Ecol 38(3):e12437

    Google Scholar 

  53. Kalisinska E, Bosiacka-Baranowska I, Lanocha N, Kosik-Bogacka D, Krolaczyk K, Wilk A, Kavetska K, Budis H, Gutowska I, Chlubek D (2014) Fluoride concentrations in the pineal gland, brain and bone of goosander (Mergus merganser) and its prey in Odra River estuary in Poland. Environ Geochem Health 36(6):1063–1077

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaur R, Saxena A, Batra M (2017) A review study on fluoride toxicity in water and fishes: current status, toxicology and remedial measures. Int J Environ Agric Biotech 2(1):238693

    Google Scholar 

  55. Kennedy AJ, Millward RN, Steevens JA, Lynn JW, Perry KD (2006) Relative sensitivity of zebra mussel (Dreissena polymorpha) life-stages to two copper sources. J Great Lakes Res 32(3):596–606

    CAS  Google Scholar 

  56. Kristofco LA, Cruz LC, Haddad SP, Behra ML, Chambliss CK, Brooks BW (2016) Age matters: developmental stage of Danio rerio larvae influences photomotor response thresholds to diazinion or diphenhydramine. Aquat Toxicol 170:344–354

    CAS  PubMed  Google Scholar 

  57. Kumar A, Bajpai S, Tripathi N, Tripathi M (2010) Respiratory response of Asian catfish, Clarias batrachus, to fluoride. Fluoride 43(2):119

    CAS  Google Scholar 

  58. Kumar A, Tripathi N, Tripathi M (2007) Fluoride-induced biochemical changes in fresh water catfish (Clarias batrachus, Linn.). Fluoride 40(1):37–41

    CAS  Google Scholar 

  59. Kumar S, Mahaseth RK, Tiwari M, Sehgal R, Rajora P, Mathur R (2015) Interaction of aqueous leaf extract of Aegle marmelos (L.) Corr. with cholinergic, serotonergic and adrenergic receptors: An ex vivo study. Indian J Pharmacol 47(1):109

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kumar V, Kalita J, Bora HK, Misra UK (2016) Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model. Toxicol Appl Pharmacol 293:37–43

    CAS  PubMed  Google Scholar 

  61. Li M, Cao J, Chen J, Song J, Zhou B, Feng C, Wang J (2016) Waterborne fluoride exposure changed the structure and the expressions of steroidogenic-related genes in gonads of adult zebrafish (Danio rerio). Chemosphere 145:365–375

  62. Little EE, Brewer SK (2001) Neurobehavioral toxicity in fish. Target organ toxicity in marine freshwater teleosts, 141–176

  63. Lobo H, Méndez-Fernández L, Martínez-Madrid M, Daam MA, Espíndola EL (2016) Acute toxicity of zinc and arsenic to the warmwater aquatic oligochaete Branchiura sowerbyi as compared to its coldwater counterpart Tubifex tubifex (Annelida, Clitellata). J Soils Sedim 16(12):2766–2774

    CAS  Google Scholar 

  64. Madhav M, David SEM, Kumar RS, Swathy J, Bhuvaneshwari M, Mukherjee A, Chandrasekaran N (2017) Toxicity and accumulation of Copper oxide (CuO) nanoparticles in different life stages of Artemia salina. Environ Toxicol Pharmacol 52:227–238

    CAS  PubMed  Google Scholar 

  65. McPherson CA, Lee DH, Chapman PM (2014) Development of a fluoride chronic effects benchmark for aquatic life in freshwater. Environ Toxicol Chem 33(11):2621–2627

  66. Mendoza-Schulz A, Solano-Agama C, Arreola-Mendoza L, Reyes-Márquez B, Barbier O, Del Razo L, Mendoza-Garrido M (2009) The effects of fluoride on cell migration, cell proliferation, and cell metabolism in GH4C1 pituitary tumour cells. Toxicol Lett 190(2):179–186

    CAS  PubMed  Google Scholar 

  67. Metcalfe-Smith JL, Holtze KE, Sirota GR, Reid JJ, de Solla SR (2003) Toxicity of aqueous and sediment-associated fluoride to freshwater organisms. Environ Toxicol Chem Int J 22(1):161–166

    CAS  Google Scholar 

  68. Milhaud G, El Bahri L, Dridi A (1981) The effects of fluoride on fish in Gabes Gulf [Tunisia]. Fluoride

  69. Mohammed A (2013) New insights into toxicity drug testing, Why are early life stages of aquatic organisms more sensitive to toxicants than adults. 49–62

  70. Narwaria Y, Saksena D (2012) Acute toxicity bioassay and behavioural responses induced by sodium fluoride in freshwater fish Puntius sophore (bloch). Fluoride 45(1):7–12

    CAS  Google Scholar 

  71. Olakolu FC, Chukwuka AV (2014) Trace metal concentrations and antioxidant activity in ovarian tissue of blue crab Callinectes amnicola from Lagos lagoon and implications for reproductive success. Zool Ecol 24(3):278–284

    Google Scholar 

  72. Otitoloju A, Don-Pedro K (2002) Establishment of the toxicity ranking order of heavy metals and sensitibity scale of benthic animals inhabiting the Lagos lagoon. West Afr J Appl Ecol. https://doi.org/10.4314/wajae.v3i1.45577

    Article  Google Scholar 

  73. Pandey S, Kumar R, Sharma S, Nagpure N, Srivastava SK, Verma M (2005) Acute toxicity bioassays of mercuric chloride and malathion on air-breathing fish Channa punctatus (Bloch). Ecotoxicol Environ Safe 61(1):114–120

    CAS  Google Scholar 

  74. Pandit DN, Sinha A (2019) Ecotoxicity of silver nanoparticles in an Indian air-breathing catfish, Clarias batrachus (Linnaeus). J Entomol Zool St 7(5):906–911

    Google Scholar 

  75. Pavlov D, Kasumyan A (2000) Patterns and mechanisms of schooling behavior in fish: a review. J Ichthyol 40(2):S163

    Google Scholar 

  76. Pearcy K, Elphick J, Burnett‐Seidel C (2015) Toxicity of fluoride to aquatic species and evaluation of toxicity modifying factors. Environ Toxicol Chem 34(7):1642–1648

  77. Pillai K, Mane U (1984) The effect of fluoride on fertilized eggs of a freshwater fish, Catla catla (Hamilton). Toxicol Lett 22(2):139–144

    CAS  PubMed  Google Scholar 

  78. Pitcher TJ (2012) The behaviour of teleost fishes. Springer Science & Business Media, Berlin

    Google Scholar 

  79. Reader SM (2015) Causes of individual differences in animal exploration and search. Top Cogn Sci 7(3):451–468

    PubMed  Google Scholar 

  80. Reish DL, Oshida PS (1987) Manual of methods in aquatic environment research. Food & Agriculture Org, Rome

    Google Scholar 

  81. Richards JG (2011) Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. J Exp Biol 214(2):191–199

    PubMed  Google Scholar 

  82. Robinson PD (2009) Behavioural toxicity of organic chemical contaminants in fish: application to ecological risk assessments (ERAs). Canad J Fish Aquat Sci 66(7):1179–1188

    CAS  Google Scholar 

  83. Saha SSNC (2021) Study on acute toxicity of bifenthrin to (Clarias batrachus Linn.). Indian J Ecol 48(2):545–548

    Google Scholar 

  84. Sahu G, Kumar V (2021) The toxic effect of fluoride and arsenic on behaviour and morphology of catfish (Clarias batrachus). Nat Environ Pollut Technol 20(1):371–375

    CAS  Google Scholar 

  85. Sajja V, Sravanthi Malempati P, Tilak KS (2018) Sodium fluoride induced biochemical changes in the tissues of fresh water indian major carp catla catla (hamilton)

  86. Santos I, Diniz M, Carvalho M, Santos J (2014) Assessment of essential elements and heavy metals content on Mytilus galloprovincialis from river Tagus estuary. Biol Trace Elem Res 159(1):233–240

    CAS  PubMed  Google Scholar 

  87. Scherer E, Harrison SE, Brown SB (1986) Locomotor activity and blood plasma parameters of acid-exposed lake whitefish, Coregonus clupeaformis. Can J Fish Aquat Sci 43(8):1556–1561

  88. Schmieder P, Jensen K, Johnson R, Tietge J (2000) Comparative sen‐sitivity of different life-stages of medaka and salmonid fishes to 2, 3, 7, 8-TCDD. In: Pre‐sented at International Symposium on Endocrine-Disrupting Substances Testing in Medaka, Nagoya, Japan, March. pp 17–20

  89. Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68(4):369–392

    CAS  PubMed  Google Scholar 

  90. Scott GR, Sloman KA, Rouleau C, Wood CM (2003) Cadmium disrupts behavioural and physiological responses to alarm substance in juvenile rainbow trout (Oncorhynchus mykiss). J Exp Biol 206(11):1779–1790

    CAS  PubMed  Google Scholar 

  91. Sharma K, Upreti N, Sharma S, Sharma S (2012) Protective effect of Spirulina and tamarind fruit pulp diet supplement in fish (Gambusia affinis Baird & Girard) exposed to sublethal concentration of fluoride, aluminum and aluminum fluoride

  92. Shinn C, Santos MM, Lek S, Grenouillet G (2015) Behavioral response of juvenile rainbow trout exposed to an herbicide mixture. Ecotoxicol Environ Safe 112:15–21

    CAS  Google Scholar 

  93. Shivarajashankara Y, Shivashankara A (2012) Neurotoxic effects of fluoride in endemic skeletal fluorosis and in experimental chronic fluoride toxicity. J Clin Diagn Res 6(4):740–744

    Google Scholar 

  94. Sloman K, McNeil P (2012) Using physiology and behaviour to understand the responses of fish early life stages to toxicants. J Fish Biol 81(7):2175–2198

    CAS  PubMed  Google Scholar 

  95. Soni R, Verma SK (2018) Acute toxicity and behavioural responses in Clarias batrachus (Linnaeus) exposed to herbicide pretilachlor. Heliyon 4(12):e01090

    PubMed  PubMed Central  Google Scholar 

  96. Sprague J (1971) Measurement of pollutant toxicity to fish—III: sublethal effects and “safe” concentrations. Water Res 5(6):245–266

    CAS  Google Scholar 

  97. Stevens M, Merilaita S (2009) Animal camouflage: current issues and new perspectives. Philos Trans Royal Soc B Biol Sci 364(1516):423–427

    Google Scholar 

  98. Taju G, Majeed SA, Nambi K, Babu VS, Vimal S, Kamatchiammal S, Hameed AS (2012) Comparison of in vitro and in vivo acute toxicity assays in Etroplus suratensis (Bloch, 1790) and its three cell lines in relation to tannery effluent. Chemosphere 87(1):55–61

    CAS  PubMed  Google Scholar 

  99. US EPA (1999) EPA Probit Analysis Program Used for Calculating LCIEC Values. Version 1.5, Ecological Monitoring Research Division, Environmental Monitoring Systems Laboratory, US. Environmental Protection Agency Cincinnati, OHIO

  100. Verma S, Rani S, Tyagi A, Dalela R (1980) Evaluation of acute toxicity of phenol and its chloro-and nitro-derivatives to certain teleosts. Water Air Soil Pollut 14(1):95–102

    CAS  Google Scholar 

  101. Vindas MA, Gorissen M, Höglund E, Flik G, Tronci V, Damsgård B, Thörnqvist P-O, Nilsen TO, Winberg S, Øverli Ø (2017) How do individuals cope with stress? Behavioural, physiological and neuronal differences between proactive and reactive coping styles in fish. J Exp Biol 220(8):1524–1532

    PubMed  Google Scholar 

  102. Vorhees CV, Williams MT, Hawkey AB, Levin ED (2021) Translating neurobehavioral toxicity across species from zebrafish to rats to humans: Implications for risk assessment. Front Toxicol 3:3

    Google Scholar 

  103. Vutukuru S, Suma C, Madhavi KR, Juveria J, Pauleena JS, Rao JV, Anjaneyulu Y (2005) Studies on the development of potential biomarkers for rapid assessment of copper toxicity to freshwater fish using Esomus danricus as model. Int J Environ Res Publ Health 2(1):63–73

    CAS  Google Scholar 

  104. Wang H, Zhou L, Liao X, Meng Z, Xiao J, Li F, Zhang S, Cao Z, Lu H (2019) Toxic effects of oxine-copper on development and behavior in the embryo-larval stages of zebrafish. Aquat Toxicol 210:242–250

    CAS  PubMed  Google Scholar 

  105. Ward AJ, Duff AJ, Horsfall JS, Currie S (2008) Scents and scents-ability: pollution disrupts chemical social recognition and shoaling in fish. Proc Royal Soc B Biol Sci 275(1630):101–105

    Google Scholar 

  106. Wu S-C, Horng J-L, Liu S-T, Hwang P-P, Wen Z-H, Lin C-S, Lin L-Y (2010) Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J Physiol Cell Physiol 298(2):C237–C250

    CAS  PubMed  Google Scholar 

  107. Yamada J, Inoue K, Furukawa T, Fukuda A (2010) Low-concentration tributyltin perturbs inhibitory synaptogenesis and induces neuronal death in immature but not mature neurons. Toxicol Lett 198(2):282–288

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr Kishore Dhara gratefully acknowledges the Department of Fisheries, Aquaculture, Aquatic Resources and Fishing Harbours, Govt. of West Bengal, for allowing him to undergo research activity. The authors are grateful to the Department of Zoology, Barasat Government College, Kolkata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azubuike V. Chukwuka.

Ethics declarations

Conflict of interest

Kishore Dhara, Shubhajit Saha, Azubuike V. Chukwuka, and Nimai Chandra Saha declare that we have no conflict of interest.

Ethical approval

We attest that the research meets all applicable standards concerning the ethics of research integrity, including no duplicate publication, fraud, or plagiarism.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishore, D., Shubhajit, S., Chukwuka, A.V. et al. Behavioural toxicity and respiratory distress in early life and adult stage of walking catfish Clarias batrachus (Linnaeus) under acute fluoride exposures. Toxicol. Environ. Health Sci. 14, 33–46 (2022). https://doi.org/10.1007/s13530-021-00115-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-021-00115-4

Keywords

Navigation