Skip to main content
Log in

Toxicopathological effects of acute cadmium chloride exposure of African Catfish, Clarias gariepinus

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Object

There are increasing levels of global cadmium (Cd2+) aquatic environmental pollution with untold consequences following either sudden exposure to large concentrations or prolong exposure to low doses. The investigation of sudden exposure to large concentrations of Cd2+ toxicities in exposed fish, especially in the hardy and adaptable Clarias gariepinus (C. gariepinus) with accessory breathing organs will further elucidate on its toxicity pathways given the spates of industrial accidents-induced environmental pollution.

Methods

The experiment involved the use of 126 adult C. gariepinus exposed to various concentrations of cadmium chloride (CdCl2) over a 96-h period, in triplicates, following 14-day acclimatization period.

Results

 Initial behavioral agitations progressed to depression, including signs of respiratory distress, neurotoxicity, and death in some of the exposed fish. A median lethal concentration (LC50) established for CdCl2 was 10.48 mgL−1 in the exposed adult C. gariepinus. The exposure caused sudden deterioration in fish water quality with severe gill cellular damage, which provoked variable hematological responses in the exposed fish.

Conclusion

 Cadmium chloride was more toxic to C. gariepinus adults than already reported for C. gariepinus fingerlings and juveniles based on the established LC50 values. Sudden exposure to large concentration of CdCl2 has the propensity to negatively impact fish health indirectly (changes in fish water quality) and directly (hemotoxicity and cellular damages).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rajaganapathy V, Xavier F, Sreekumar D, Mandal PK (2011) Heavy metal contamination in soil, water and fodder and their presence in livestock and products: A review. J Environ Sci Technol 4(3):234–249

    Article  CAS  Google Scholar 

  2. Alturiqi A, Albedair LA (2012) Evaluation of some heavy metals in certain fish, meat, and meat products in Saudi Arabian markets. Egyptian J Aqua Res 38(1):45–49

    Article  Google Scholar 

  3. Rajkowska M, Protasowicki M (2011) Distribution of selected metals in bottom sediments of lakes Ińsko and Wiola (Poland). Ecol Chem Engr 18(5–6):805–812

    CAS  Google Scholar 

  4. Polat F, Akin S, Yildirim A, Dal T (2015) The effects of point pollutants-originated heavy metals (lead, copper, iron, and cadmium) on fish living in Yeşilirmak River. Turkey Toxicol Ind Health 32(8):1438–1449

    Article  Google Scholar 

  5. Mansouri B, Baramaki R, Ebrahimpour M (2012) Acute toxicity bioassay of mercury and silver on Capoeta fusca (Blackfish). Toxicol Ind Health 28(5):393–398

    Article  CAS  Google Scholar 

  6. Svobodová Z, Lloyd R, Máchová J, Vykusová B (1993) Water Quality and Fish Health. EIFAC Technical Paper. No. 54. Food Agriculture Organization of the United Nations, Rome

  7. Sövényi J, Szakolczai J (1993) Studies on the toxic and immunosuppressive effects of cadmium on the common carp. Acta Vet Hung 41(3–4):415–426

    PubMed  Google Scholar 

  8. Hansen JA, Welsh PG, Lipton J, Suedkamp MJ (2002) The effects of long-term cadmium exposure on the growth and survival of juvenile bull trout (Salvelinus confleuentus). AquatToxicol 58:165–174

    CAS  Google Scholar 

  9. Chang X, Chen Y, Feng J, Huang M, Zhang J (2021) Amelioration of Cd-induced bioaccumulation, oxidative stress and immune damage by probiotic Bacillus coagulans in common carp (Cyprinus carpio L.). Aqua Rep 20:100678. https://doi.org/10.1016/j.aqrep.2021.100678.

  10. Pragatheeswaran V, Loganathan B, Natarajan R, Venugopalan VK (1987) Cadmium induced vertebral deformities in an estuarine fish, Ambassis commersoni Cuvier. Proc. Indian Acad. Sci. (Anim. Sci.) 96:389–393. https://doi.org/10.1007/BF03179592

  11. Huang X, Feng Y, Fan W, Duan J, Duan Y, Xiong G, Wang K, Deng Y, Geng Y, Ouyang P, Chen D, Yang S (2019) Potential ability for metallothionein and vitamin E protection against cadmium immunotoxicity in head kidney and spleen of grass carp (Ctenopharyngodon idellus). Ecotoxicol Environ Saf 170:246–252

    Article  CAS  Google Scholar 

  12. Hollis L, McGeer JC, McDonald DG, Wood CM (1999) Cadmium accumulation, gill cadmium binding, accumulation and physiological effects during long-term sub-lethal Cd exposure in Rainbow trout. Aqua Toxicol 46(2):101–119

    Article  CAS  Google Scholar 

  13. Al-Asgah NA, Abdel-Warith AA, Younis EM, Allam HY (2015) Hematological and biochemical parameters and tissue accumulation of cadmium in Oreochromis niloticus exposed to various concentrations of cadmium chloride. Saudi J Biol Sci 22(5):543–550. https://doi.org/10.1016/j.sjbs.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tohamy HG, Shourbela RM (2016) Pathological investigations on Galilee Tilapia (Sarotherodon galilaeus) following chronic exposure to cadmium chloride. J Aquac Res Dev 7(9):446. https://doi.org/10.4172/2155-9546.1000446

    Article  CAS  Google Scholar 

  15. Ueda S, Hasegawa H, Kakiuchi H (2015) Nuclear accident-derived H-3 in river water of Fukushima Prefecture during 2011–2014. J Environ Radioact 146:102–109

    Article  CAS  Google Scholar 

  16. Lu Q, Deng QC, Lu W (2017) Heavy Metal Pollution Status and Health Risk Assessment in the Longjiang River. Meteor Environ Res 6:51–56

    Google Scholar 

  17. Liu RZ, Zhang K, Zhang ZJ, Borthwick AGL (2018) Water-scale environmental risk assessment of accident water pollution: The case of Laoguan river, China. J Environ Inform 31:87–96

    Article  CAS  Google Scholar 

  18. Berger A (2000) Cirrhosis may be amenable to telomerase treatment. BMJ (Clinical research ed) 320(7234):536A

    Article  CAS  Google Scholar 

  19. IMPEL (2011) Massive alumina red sludge release after the failure of a containment dam, Kolontár, Hungary. IMPEL–French Ministry for Sustainable Development-DGPR/BARPI- Hungarian Ministry for Rural Development No. 39047. IMPEL Seminar Aix-en-Provence, France, 16 and 17 November 2011, pp. 19–28

  20. Xu ZC, Yang XY, Wen Y, Chen GH, Fang JD (2009) Evaluation of the heavy metal’s contamination and its potential ecological risk of the sediments in Beijiang river’s upper and middle reaches. Environ Sci 30:3262–3268 ((in Chinese))

    Google Scholar 

  21. Zhang XJ, Chen C, Mi ZI, Wang CK (2013) Emergent cadmium removal technology for drinking water and wastewater and measures for environmental accidents in Guangxi Longjiang River. Water Wastewater Eng 39:24–34 ((In Chinese))

    Google Scholar 

  22. Zhang MJ, Huang FK, Wang GY, Liu XY, Wen JK, Zhang XS, Huang YS, Xia Y (2017) Geographic distribution of cadmium and its interaction with the microbial community in the Longjiang River: Risk evaluation after a shocking pollution accident. Sci Rep 7(227):1–12. https://doi.org/10.1038/s41598-017-00280-y

    Article  CAS  Google Scholar 

  23. El-Boshy ME, Gadalla HA, Abd El-Hamied FM (2013) Immunological, haematological and biochemical changes induced by short term exposure to cadmium in catfish (Clarias gariepinus). J Coastal Life Med 2 (3):175–180. https://doi.org/10.12980/JCLM.2.2014J57

  24. Elarabany NF, Bahnsawy MH, Alfakheri M (2019) Effects of cadmium on some haematological and biochemical parameters of African catfish, Clarias graiepinus. Afr J Biol Sci 15(1):43–52

    Google Scholar 

  25. Pariza AAFM, Ahmad SA, Fadzil NI, Basirun AA, Sha’arani SAW, Asri NA M., Sabullah MK, Khalid A, Shukor MY, (2019) Histopathological and cholinesterase changes in the gills of Clarias gariepinus as a result of cadmium exposure. J Environ Biol 40:683–690

    Article  CAS  Google Scholar 

  26. Mohanty BP, Mahananda MR, Pradhan S (2013) Cadmium induced toxicity and antioxidant activities in Labeo rohita (Hamilton). Environ Ecol Res 1(2):41–47

    Article  Google Scholar 

  27. Bhatnagar A, Devi P (2013) Water quality guidelines for the management of pond fish culture. Int J Environ Sci 3(6):1980–2009

    Google Scholar 

  28. UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS) (2015) ST/SG/AC.10/30/Rev.6. United Nations: New York, 2015, pp. 217–240, http://www.unece.org/fileeadmin/DAM/trans/danger/publi/ghs_rev06/English/ST-SG-AC10-30-Rev6e.pdf

  29. Jayakumar P, Paul VI (2006) Patterns of cadmium accumulation in selected tissues of the catfish Clarias batrachus (Linn.) exposed to sublethal concentration of cadmium chloride. Veterinarski Arhiv 76 (2):167–177

  30. Ubani-Rex OA, Saliu JK, Bello TH (2017) Biochemical effects of the toxic interaction of copper, lead and cadmium on Clarias gariepinus. J Health Pollut 7(16):38–48

    Article  Google Scholar 

  31. Osisiogu CP, Aladesanmi TA (2019) Cadmium-induced toxicity and antioxidant enzyme responses in tissue and organs of African catfish (Clarias gariepinus). Afri J Biochem Res 13(5):63–72. https://doi.org/10.5897/AJBR2018.0996

    Article  CAS  Google Scholar 

  32. Strzyzewska E, Szarek J, Babinska I (2016) Morphologic evaluation of the gills as a tool in the diagnostics of pathological conditions in fish and pollution in the aquatic environment: A review. Vet Med 61(3):123–132

    Article  Google Scholar 

  33. van Vuren JHJ, Du Preez HH, Deacon AR (1994) Effects of pollutants on the physiology of fish in the Olifants River (Eastern Transvaal). A Report to the Water Research Commission on the Project Titled: The effects of pollutants on the physiology of fish in the Olifants River (Eastern Transvaal). WRC Report 350/1/94

  34. Tort L, Hernández-Pascual MD (1990) Hematological effects of Dogfish (Seyliorhnus canicula) after short-term sublethal cadmium exposure. CEAN Soil Air Water 18(3):379–383

    CAS  Google Scholar 

  35. Benli AC, Koksal G, Ozkul A (2008) Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): effects on gill, liver and kidney histology. Chemosphere 72:1355–1358. https://doi.org/10.1016/j.chemosphere.2008.04.037

    Article  CAS  PubMed  Google Scholar 

  36. Monteiro MS, Rocha E, Fontainhas-Fernandes A, Sousa M (2008) Quantitative histopathology of Oreochromis niloticus gill after copper exposure. J Fish Biol 73(6):1376–1392

    Article  CAS  Google Scholar 

  37. Santos DCM, Matta SLP, Oliveira JA, Santos JAD (2011) Histological alterations in gills of Astyanax aff. Bimaculua caused by acute exposition to zinc. Exp Toxicol Pathol 64 (7–8):861–866

  38. Martinez CBR, Nagae MY, Zaia CTBV, Zaia DAM (2004) Morphological and physiological acute effects of lead in the neotropical fish, Prochilodus lineatus. Braz J Biol 64(4):797–807

    Article  CAS  Google Scholar 

  39. De Boeck GK, Van der Ven W, Meeus R, Blust R (2007) Sublethal copper exposure induces respiratory stress in common and gibel carp but not in rainbow trout. Comp Biochem Physiol C Toxicol Pharmacol 144(4):380–390

    Article  Google Scholar 

  40. Onita (Mladin) B, Albu P, Herman H, Balta C, Lazar V, Fulop A, Baranyai E, Harangi S, Keki S, Nagy L, Nagy T, Józsa V, Gál D, Györe K, Stan M, Hermenean A, Dinischiotu A, (2021) Correlation between heavy metal-induced histopathological changes and trophic interactions between different fish species. Appl Sci 11:3760. https://doi.org/10.3390/app11093760

    Article  CAS  Google Scholar 

  41. Latif A, Ali M, Kaoser R, Iqbal R, Umer K, Latif M, Qadir S, Iqbal F (2012) Effect of cadmium chloride and ascorbic acid exposure on the vital organs of freshwater Cyprinid, Labeo rohita. Afri J Biotechnol 11(33):8398–8403

    CAS  Google Scholar 

  42. Patil V (2013) How to Prepare 1000 ppm of Cadmium (2013). http://www.researchgate.net/post/How_to_prepare_1000_ppm_of_cadmium

  43. OECD (1992) Guidelines for the Testing of Chemicals No. 203: Fish, Acute Toxicity Test (adopted: 17th July 1992). Organization for Economic Co-operation and Development, Paris: France

  44. Finney DJ (2017) In Probit Analysis. Cambridge University Press, London

    Google Scholar 

  45. Abalaka SE, Oyelowo FO, Akande MG, Tenuche OZ, Sani NA, Adeyemo BT, Idoko SI, Ogbe AO, Ejeh SA (2021) Effects of Moringa oleifera leaves extract, vitamin C, and taurine co-exposures on calcium and metallothionein levels, oxidative stress, and gill histopathological changes in Clarias gariepinus exposed to sub-lethal cadmium. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-14426-z

    Article  Google Scholar 

  46. Blaxhall PC, Daisley KW (1973) Routine hematological methods for use with fish blood. J Fish Biol 5(6):771–781

    Article  Google Scholar 

  47. Chessbrough M (2006) In district laboratory practice in tropical countries, Part 2, 2nd edn. Cambridge University Press, Cambridge, p 2006

    Book  Google Scholar 

  48. Metcalfe JD, Craig JF (2011) Ethical justification for the use and treatments of fishes in research: an update. J Fish Biol 78(2):393–394

    Article  CAS  Google Scholar 

  49. Bancroft JD, Cook HC (1994) Manual of histological techniques and their diagnostic application. Churchill Livingstone, London

    Google Scholar 

  50. Poleksic V, Mitrovic-Tutundzic V (1994) Fish gills as a monitor of sublethal and chronic effects of pollution. In: Muller R, Llyod R (eds) Sublethal and chronic Effects of pollutants on freshwater fish. Fishing News Books, London, pp 339–352

    Google Scholar 

Download references

Acknowledgements

We thank Mr. Raphael Omerah of the Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria, for his contributions.

The University Research Foundation (The University of Abuja Institutional Based Research Grant with Ref. no.: TETFUND/DESS/UNI/ABUJA/RP/VOL. 1) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samson E. Abalaka.

Ethics declarations

Conflict of interest

Samson E. Abalaka, Fatima O. Oyelowo, Motunrayo G. Akande, Oremeyi Z. Tenuche, Nuhu A. Sani, Bolade T. Adeyemo, Idoko S. Idoko, Adamu O. Ogbe, and Sunday A. Ejeh declare that they have no conflict of interest.

Ethical approval

The University of Abuja Ethics Committee on Animal Use (UAECAU) approved the work (Reference no.: UAECAU/2018/012).

Additional information

Samson E. Abalaka contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abalaka, S.E., Oyelowo, F.O., Akande, M.G. et al. Toxicopathological effects of acute cadmium chloride exposure of African Catfish, Clarias gariepinus. Toxicol. Environ. Health Sci. 14, 25–32 (2022). https://doi.org/10.1007/s13530-021-00113-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-021-00113-6

Keywords

Navigation