Skip to main content

Acute Toxicity of Imidacloprid on the Developmental Stages of Common Carp Cyprinus carpio

Abstract

Objective

The objective of the present study was to elucidate the toxic effects of imidacloprid on the embryonic and larval stages of common carp (Cyprinus carpio).

Methods

Each of the 1000 fertilized eggs and larvae were exposed to six different concentrations (0, 10, 30, 100, 300, and 1000 µg/L) of imidacloprid in 30 plastic bowls. Each of the control and treatment was maintained in five replicates.

Results

Results showed that hatching rate of fertilized eggs and number of dead embryos and larvae significantly decreased with increasing imidacloprid concentrations. The 24-, 48-, and 72-h LC50 value of imidacloprid for common carp embryos were estimated to be 12,708.8, 611, and 274.9 µg/L, respectively and the 24-, 48-, 72-, and 96-h LC50 of imidacloprid for common carp larvae were estimated to be 93719, 21691, 2352.7, and 1292.6 µg/L, respectively. Furthermore, results showed several malformations of common carp embryos and larvae induced by the toxicity of imidacloprid when exposed to 300 and 1000 µg/L.

Conclusion

The results suggest that the minimum concentration of 10 µg/L imidacloprid in the aquatic environment may have adverse effects on the embryonic and larval stages of common carp.

This is a preview of subscription content, access via your institution.

References

  1. Sumon, K. A. et al. Risk assessment of pesticides used in rice-prawn concurrent systems in Bangladesh. Sci. Total Environ. 568, 498–506 (2016).

    CAS  PubMed  Article  Google Scholar 

  2. Ali, M. H., Sumon, K. A., Sultana, M. & Rashid, H. Toxicity of cypermethrin on the embryo and larvae of gangetic mystus, Mystus cavasius. Environ. Sci. Pollut. Res. 25, 3193–3199 (2018).

    CAS  Article  Google Scholar 

  3. Rahman, S. Pesticide consumption and productivity and the potential of IPM in Bangladesh. Sci. Total Environ. 445, 48–56 (2013).

    PubMed  Article  CAS  Google Scholar 

  4. Dasgupta, S., Meisner, C. & Huq, M. A pinch or a pint? Evidence of pesticide overuse in Bangladesh. J. Agric. Econ. 58, 91–114 (2007).

    Article  Google Scholar 

  5. Hasan, M. N., Islam, H., Mahmud, Y., Ahmed, K. & Siddiquee, S. Application of pesticides in rice-prawn (crustaceans) culture: perception and its impacts. Annu. Res. Rev. Biol. 4, 1219–1229 (2014).

    Article  Google Scholar 

  6. Iturburu, F. G. et al. Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. Environ. Toxicol. Chem. 36, 699–708 (2017).

    CAS  PubMed  Article  Google Scholar 

  7. Morrissey, C. A. et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ. Int. 74, 291–303 (2015).

    CAS  PubMed  Article  Google Scholar 

  8. Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 22, 1050–1064 (2016).

    CAS  Article  Google Scholar 

  9. Matsuda, K., Shimomura, M., Ihara, M., Akamatsu, M. & Sattelle, D. B. Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modeling studies. Biosci. Biotechnol. Biochem. 69, 1442–1452 (2005).

    CAS  PubMed  Article  Google Scholar 

  10. Mohr, S. et al. Macroinvertebrate community response to repeated short-term pulses of the insecticide imidacloprid. Aquat. Toxicol. 110, 25–36 (2012).

    PubMed  Article  CAS  Google Scholar 

  11. Armbrust, K. L. & Peeler, H. B. Effects of formulation on the run-off of imidacloprid from turf. Pestic. Manage. Sci. 58, 702–706 (2002).

    CAS  Article  Google Scholar 

  12. Gupta, S., Gajbhiye, V. T., Kalpana & Agnihotri, N. P. Leaching behavior of imidacloprid formulations in soil. Bull. Environ. Contam. Toxicol. 68, 502–508 (2002).

    CAS  PubMed  Article  Google Scholar 

  13. Hilz, E. & Vermeer, A. W. P. Effect of formulation on spray drift: a case study for commercial imidacloprid products. Asp. Appl. Biol. 114, 445–450 (2011).

    Google Scholar 

  14. EASAC (European Academies Science Advisory Council). Ecosystem services, agriculture and neonicotinoids. 2015, EASAC policy report 26, ISBN: 978-3-8047-3437-1 (2015).

  15. Van Dijk, T. C., Van Staalduinen, M. A. & Van der Sluijs, J. P. Macro-invertebrate decline in surface water polluted with imidacloprid. PLoS ONE 8, e62374 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Vijver, M. G. & Van den Brink, P. J. Macro-invertebrate decline in surface water polluted with imidacloprid: a rebuttal and some new analyses. PLoS ONE 9, e89837 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Sumon, K. A. et al. Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms. Environ. Pollut. 236, 432–441 (2018).

    CAS  PubMed  Article  Google Scholar 

  18. Sánchez-Bayo, F. & Goka, K. Unexpected effects of zinc pyrithione and imidacloprid on Japanese medaka fish (Oryzias latipes). Aquat. Toxicol. 74, 285–293 (2005).

    PubMed  Article  CAS  Google Scholar 

  19. Tišler, T., Jemec, A., Mozetič, B. & Trebše, P. Hazard identification of imidacloprid to aquatic environment. Chemosphere 76, 907–914 (2009).

    PubMed  Article  CAS  Google Scholar 

  20. Qadir, S., Bukhari, R. & Iqbal, F. Effect of sub lethal concentration of imidacloprid on proximate body composition of Labeo rohita. Iran. J. Fish. Sci. 14, 937–945 (2015).

    Google Scholar 

  21. Desai, B. & Parikh, P. Behavioural responses to acute exposure of Imidacloprid and Curzate on Labeo rohita (Hamilton, 1822). Int. J. Open Sci. Res. 2, 1–12 (2014).

    Article  Google Scholar 

  22. Scheil, V. & Köhler, H. R. Influence of nickel chloride, chlorpyrifos, and imidacloprid in combination with different temperatures on the embryogenesis of the zebrafish Danio rerio. Arch. Environ. Contam. Toxicol. 56, 238–243 (2009).

    CAS  PubMed  Article  Google Scholar 

  23. Priya, B. P., Rachel, V. & Maruthi, Y. A. Acute toxicity effect of Imidacloprid insecticide on serum biochemical parameters of fresh water teleost Channa punctatus. J. Sci. Innov. Technol. 1, 18–22 (2012).

    CAS  Google Scholar 

  24. Rajput, V. & Singh, S. K. Comparative toxicity of Butachlor, Imidacloprid and Sodium fluoride on protein profile of the walking cat fish Clarias batrachus. J. Appl. Pharm. Sci. 2, 121–124 (2012).

    Google Scholar 

  25. Desai, B. & Parikh, P. Biochemical alterations on exposure of imidacloprid and curzate on fresh water fish Oreochromis mossambicus and Labeo rohita. Indian J. Forensic Med. Toxicol. 7, 87 (2013).

    CAS  Article  Google Scholar 

  26. Qadir, S., Latif, A., Ali, M. & Iqbal, F. Effects of imidacloprid on the hematological and serum biochemical profile of Labeo rohita. Pak. J. Zool. 46, 1085–1090 (2014).

    CAS  Google Scholar 

  27. Ge, W. et al. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio). J. Agric. Food Chem. 63, 1856–1862 (2015).

    CAS  PubMed  Article  Google Scholar 

  28. Ansoar-Rodríguez, Y. et al. Genotoxic potential of the insecticide imidacloprid in a non-target organism (Oreochromis niloticus-Pisces). J. Environ. Prot. 6, 1360 (2015).

    Article  CAS  Google Scholar 

  29. Su, F., Zhang, S., Li, H. & Guo, H. In vitro acute cytotoxicity of neonicotinoid insecticide imidacloprid to gill cell line of flounder Paralichthy olivaceus. Chinese J. Oceanol. Limnol. 25, 209–214 (2007).

    CAS  Article  Google Scholar 

  30. Qadir, S. & Iqbal, F. Effect of subleathal concentrtion of imidacloprid on the histology of heart, liver and kidney in Labeo rohita. Pak. J. Pharm. Sci. 29, 2033–2038 (2016).

    CAS  PubMed  Google Scholar 

  31. Tyor, A. K. & Harkrishan, K. Effects of imidacloprid on viability and hatchability of embryos of the common carp (Cyprinus carpio L.). Int. J. Fisher. Aquat. Studies 4, 385–389 (2016).

    Google Scholar 

  32. Sumon, K. A. et al. Acute toxicity of chlorpyrifos to embryo and larvae of banded gourami Trichogaster fasciata. J. Environ. Sci. Health B 52, 92–98 (2017).

    CAS  PubMed  Article  Google Scholar 

  33. Organization for Economic Cooperation and Development (OECD): Test No. 210: Fish, early-life stage toxicity test, OECD Guidelines for the testing of chemicals, Section 2. OECD Publishing, Paris, France (2013).

    Google Scholar 

  34. APHA, American Public Health Association, Standard Methods for the Examination of Water and Wastewater, ed. 16th., Washington, DC, 1268 (1985).

  35. Aydin, R. & Koprucu, K. Acute toxicity of diazinon on the common carp (Cyprinus carpio L.) embryos and larvae. Pestic. Biochem. Physiol. 82, 220–225 (2005).

    CAS  Article  Google Scholar 

  36. Aydin, R., Koprucu, K., Dorucu, M., Koprucu, S. S. & Pala, M. Acute toxicity of synthetic pyrethroid cypermethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Aquacult. Int. 13, 451–458 (2005).

    CAS  Article  Google Scholar 

  37. Richterva, Z. et al. Effects of a cypermethrin-based pesticide on early life stages of common carp (Cyprinus carpio L.). Vet. Med. 60, 423–431 (2015).

    Article  Google Scholar 

  38. Koprucu, K. & Aydin, R. The toxic effects of pyrethroid deltamethrin on the common carp Cyprinus carpio embryos and larvae. Pestic. Biochem. Physiol. 80, 47–53 (2004).

    CAS  Article  Google Scholar 

  39. Richterva, Z. et al. Effects of a cyhalothrin-based pesticide on early life stages of common carp (Cyprinus carpio L.). Biomed Res. Int. doi:https://doi.org/10.1155/2014/107373 (2014).

  40. Suga, N. Change of the toughness of the chorion of fish eggs. Embryologia 8, 63–74 (1963).

    Article  Google Scholar 

  41. Arufe, M. I., Arellano, J. M., Albendin, G. & Sarasquete, C. Toxicity of parathion on embryo and yolk-sac larvae of gilthead seabream (Sparus aurata L.): effects on survival, cholinesterase, and carboxylesterase activity. Environ. Toxicol. 25, 601–607 (2010).

    CAS  PubMed  Article  Google Scholar 

  42. Ansari, S. & Ansari, B. A. Alphamethrin toxicity: effect on the reproductive ability and the activities of phosphates in the tissues of zebrafish, Danio rerio. Int. J. Life Sci. Pharma. Res. 2, 89–100 (2012).

    CAS  Google Scholar 

  43. Ismail, M., Ali, R., Ali, T., Waheed, U. & Khan, Q. M. Evaluation of the acute toxicity of profenofos and its effects on the behavioral pattern of fingerling common carp (Cyprinus carpio L., 1758). Bull. Environ. Contam. Toxicol. 82, 569–573 (2009).

    CAS  PubMed  Article  Google Scholar 

  44. Velisek, J. & Stara, A. Effect of thiacloprid on early life stages of common carp (Cyprinus carpio). Chemosphere 194, 481–487 (2018).

    CAS  PubMed  Article  Google Scholar 

  45. Shi, X. et al. Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere 85, 1010–1016 (2011).

    CAS  PubMed  Article  Google Scholar 

  46. Shahjahan, M., Kabir, M. F., Sumon, K. A., Bhowmik, L. R. & Rashid, H. Toxicity of organophosphorus pesticide sumithion on larval stages of stinging catfish Heteropneustes fossilis. Chin. J. Oceanol. Limnol. 35, 109–114 (2017).

    CAS  Article  Google Scholar 

  47. Marimuthu, K. et al. Toxicity of buprofezin on the survival of embryo and larvae of African catfish, Clarias gariepinus (Bloch). PLoS ONE 8, e75545 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Xu, C., Zhao, M., Liu, W., Chen, S. & Gan, J. Enantioselectivity in zebrafish embryo toxicity of the insecticide acetofenate. Chem. Res. Toxicol. 21, 1050–1055 (2008).

    CAS  PubMed  Article  Google Scholar 

  49. Jin, M. et al. Dual enantioselective effect of the insecticide bifenthrin on locomotor behavior and development in embryonic-larval zebrafish. Environ. Toxicol. Chem. 29, 1561–1567 (2010).

    CAS  PubMed  Article  Google Scholar 

  50. Zhou, S. et al. Developmental toxicity of cartap on zebrafish embryos. Aquat. Toxicol. 95, 339–346 (2009).

    CAS  PubMed  Article  Google Scholar 

  51. Sreedevi, B., Suvarchala, G. & Philip, G. H. Morphological and physiological abnormalities during development in zebrafish due to chlorpyrifos. Indian J. Sci. Res. 5, 1–8 (2014).

    CAS  Google Scholar 

  52. Yu, K. et al. Chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish. Chem. Biol. Interact. 239, 26–33 (2015).

    CAS  PubMed  Article  Google Scholar 

  53. Moon, Y. et al. Acute toxicity and gene responses induced by endosulfan in zebrafish (Danio rerio) embryos. Chem. Spec. Bioavailab. 28, 103–109 (2016).

    CAS  Article  Google Scholar 

  54. Stehr, C. M., Linbo, T. L., Incardona, J. P. & Scholz, N. L. The developmental neurotoxicity of fipronil: notochord degeneration and locomotor defects in zebrafish embryos and larvae. Toxicol. Sci. 92, 270–278 (2006).

    CAS  PubMed  Article  Google Scholar 

  55. Fraysse, B., Mons, R. & Garric, J. Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals. Ecotox. Environ. Saf. 63, 253–267 (2006).

    CAS  Article  Google Scholar 

  56. Ekrem, S. C., Hasan, K. & Sevdan, Y. Effects of phosalone on mineral contents and spinal deformities in common carp (Cyprinus carpio L.1758). Turk. J. Fish. Aquat. Sci. 12, 259–264 (2012).

    Google Scholar 

Download references

Acknowledgements

We are grateful to Committee for Advanced Studies and Research (CASR), Bangladesh Agricultural University for providing the fund. We are also grateful to Mini Hatchery cum Breeding Complex and Aquatic Conservation Laboratory, Faculty of Fisheries, Bangladesh Agricultural University for giving the opportunity to use the existing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kizar A. Sumon.

Ethics declarations

Conflict of Interest Md. A. Islam declares that he has no conflicts of interest with the contents of this article. Md. S. Hossen declares that he has no conflicts of interest with the contents of this article. Kizar A. Sumon declares that he has no conflicts of interest with the contents of this article. Mohammad M. Rahman declares that he has no conflicts of interest with the contents of this article.

Ethical Approval This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Islam, M.A., Hossen, M.S., Sumon, K.A. et al. Acute Toxicity of Imidacloprid on the Developmental Stages of Common Carp Cyprinus carpio. Toxicol. Environ. Health Sci. 11, 244–251 (2019). https://doi.org/10.1007/s13530-019-0410-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-019-0410-8

Keywords

  • Neonicotinoid
  • Fish
  • Hatching success
  • Malformation
  • Aquatic environment