Skip to main content
Log in

Coffee Roasters and Their Occupational Lung Disease: A Literature Review

  • Mini Review
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective and Methods

Because of its characteristic sensory properties and physiological properties, coffee is one of the most popular beverages in the world. Roasted coffee beans are broadly consumed in nearly all classes of the population. The literature search used a lot of sites, including PubMed, Google Scholar, and ScienceDirect, and was further refined by reviewing titles, abstracts, and references in the bibliography to confirm additional missing reports. In this review, I collected the references for not only coffee intake and its related diseases, but also its beneficial effects on health, and investigated the toxic effects on workers, focusing on occupational lung diseases in the coffee roasting process, such as obstructive bronchiolitis.

Results and Conclusion

With respect to respiratory health for diacetyl and 2,3-pentanedione, air exposure was assessed in coffee packaging and roasting processes, and alpha-diketones were the most exposed during bean processing in the production process. OSHA recommended regular monitoring of diacetyl in related processes, providing respiratory protection to workers, and active medical surveillance, including health screening for all workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robin, P. et al. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. The BMJ. 359, j5024 (2017). doi:https://doi.org/10.1136/bmj.j5024.

    Google Scholar 

  2. Francesco, P. et al. Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: a systematic review. J. Nutr. Health Aging 19, 313–328 (2015).

    Article  CAS  Google Scholar 

  3. Freedman, N. D. et al. Association of Coffee Drinking with Total and Cause-Specific Mortality. New Eng. J. Med. 366, 1891–1904 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Odžaković, B., Džinić, N., Kukrić, Z. & Grujić, S. Effect of roasting degree on the antioxidant activity of different Arabica coffee quality classes. Acta. Sci. Pol. Technol. Aliment. 15, 409–417 (2016).

    Article  PubMed  Google Scholar 

  5. Opitz, S. E. et al. Antioxidant Generation during Coffee Roasting: A Comparison and Interpretation from Three Complementary Assays. Foods 3, 586–604 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alessio, C. et al. Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: a dose-response meta-analysis. Am. J. Epidemiol. 180, 763–775 (2014).

    Article  Google Scholar 

  7. Je, Y. & Giovanucci, E. Coffee consumption and total mortality: a meta-analysis of twenty prospective cohort studies. Br. J. Nutr. 111, 1162–1173 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, Y. et al. Association of coffee drinking with all-cause mortality: a systematic review and meta-analysis. Pub. Heal. Nutr. 18, 1282–1291 (2015).

    Article  Google Scholar 

  9. Wu, J. et al. Coffee consumption and risk of coronary heart diseases: A meta-analysis of 21 prospective cohort studies. Int. J. Cardiol. 137, 216–225 (2009).

    Article  PubMed  Google Scholar 

  10. Mostofsky, E., Rice, M. S., Levitan, E. B. & Mittleman, M. A. Habitual Coffee Consumption and Risk of Heart Failure: A Dose-Response Meta-Analysis. Circ. Heart Fail. 5, 401–405 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ding, M. et al. Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 129, 643–659 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Ding, M. et al. Caffeinated and Decaffeinated Coffee Consumption and Risk of Type 2 Diabetes: A Systematic Review and a Dose-Response Meta-analysis. Diabetes Care. 37, 569–586 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brown, O. I., Allgar, V. & Wong, K. Y. K. Coffee reduces death after myocardial infarction: a meta-analysis. Coron. Artery Dis. 27, 566–572 (2016).

    Article  PubMed  Google Scholar 

  14. Zhang, Z. et al. Habitual coffee consumption and risk of hypertension: a systematic review and meta-analysis of prospective observational studies. The Am. J. Clin. Nutr. 93, 1212–1219 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Xie, F., Wang, D., Huang, Z. & Guo, Y. Coffee consumption and risk of gastric cancer: a large updated meta-analysis of prospective studies. Nutrients 6, 3734–3746 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Akter, S. et al. Coffee drinking and colorectal cancer risk: an evaluation based on a systematic review and meta-analysis among the Japanese population. Jpn. J. Clin. Oncol. 46, 781–787 (2016).

    Article  PubMed  Google Scholar 

  17. Bravi, F. et al. Coffee reduces risk for hepatocellular carcinoma: An updated meta-analysis. Clin. Gastroenterol. Hepatol. 11, 1413–1421 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Guertin, K. A. et al. Coffee consumption and incidence of lung cancer in the NIH-AARP diet and health study. Int. J. Epidemiol. 45, 929–939 (2016).

    Article  PubMed  Google Scholar 

  19. Zivković, R. Coffee and health in the elderly. Acta. Medica. Croatica 54, 33–36 (2000).

    PubMed  Google Scholar 

  20. Bakalar, N. Coffee as a Health Drink? Studies Find Some Benefits. The New York Times (2010).

  21. Williams, R. J., Spencer, J. P. E. & Rice-Evans, C. Flavonoids: Antioxidants or signalling molecules? Free Rad. Biol. Med. 36, 838–849 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Cappelletti, S. et al. Caffeine: Cognitive and Physical Performance Enhancer or Psychoactive Drug? Curr. Neuropharmacol. 13, 71–88 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harman, D. Aging: Minimizing free radical damage. J. Anti-Aging Med. 2, 15–36 (1999).

    Article  CAS  Google Scholar 

  24. Kameya, H. Evaluation of Hydroxyl Radical and Alkyloxy Radical Scavenging Activity of Coffee by ESR Spin Trapping Method. J. Food Sci. Engin. 7, 305 311 (2017).

    Google Scholar 

  25. Ruosi, M. R. et al. A further tool to monitor the coffee roasting process: aroma composition and chemical indices. J. Agric. Food Chem. 60, 11283–11291 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Kullman, G. et al. Characterization of respiratory exposures at a microwave popcorn plant with cases of bronchiolitis obliterans. J. Occup. Environ. Hyg. 2, 169–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Daglia, M. et al. Isolation and determination of α-dicarbonyl compounds by RP-HPLC-DAD in green and roasted coffee. J. Agric. Food Chem. 55, 8877–8882 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Daglia, M. et al. Isolation, identification, and quantification of roasted coffee antibacterial compounds. J. Agric. Food Chem. 55, 10208–10213 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Dybkowska, E. et al. Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting. Rocz. Panstw. Zakl. Hig. 68, 347–353 (2017).

    CAS  PubMed  Google Scholar 

  30. Smrke, S., Opitz, S. E., Vovk, I. & Yeretzian, C. How does roasting affect the antioxidants of a coffee brew? Exploring the antioxidant capacity of coffee via on-line antioxidant assays coupled with size exclusion chromatography. Food Funct. 4, 1082–1092 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Choi, S., Jung, S. & Ko, K. S. Effects of Coffee Extracts with Different Roasting Degrees on Antioxidant and Anti-Inflammatory Systems in Mice. Nutrients 10, (2018). doi: https://doi.org/10.3390/nu10030363.

    Article  PubMed Central  CAS  Google Scholar 

  32. Alongi, M. & Anese, M. Effect of coffee roasting on in vitro α-glucosidase activity: Inhibition and mechanism of action. Food Res. Int. 111, 480–487 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, C. et al. Potential of lactic acid bacteria to modulate coffee volatiles and effect of glucose supplementation: fermentation of green coffee beans and impact of coffee roasting. J. Sci. Food Agric. 99, 409–420 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Kalaska, B. et al. Antithrombotic effects of pyridinium compounds formed from trigonelline upon coffee roasting. J. Agric. Food Chem. 62, 2853–2860 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Anese, M. et al. Effect of vacuum roasting on acrylamide formation and reduction in coffee beans. Food Chem. 145, 168–172 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Raffel, J. B. & Thompson, J. Carbon monoxide from domestic coffee roasting: a case report. Ann. Intern. Med. 159, 795–796 (2013).

    Article  PubMed  Google Scholar 

  37. Del Pino-García, R., González-SanJosé, M. L., Rivero-Pérez, M. D. & Muñiz, P. Influence of the degree of roasting on the antioxidant capacity and genoprotective effect of instant coffee: contribution of the melanoidin fraction. J. Agric. Food Chem. 60, 10530–10539 (2012).

    Article  PubMed  CAS  Google Scholar 

  38. Swasti, Y. R. & Murkovic, M. Characterization of the polymerization of furfuryl alcohol during roasting of coffee. Food Funct. 3, 965–969 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Wei, F. et al. Roasting process of coffee beans as studied by nuclear magnetic resonance: time course of changes in composition. J. Agric. Food Chem. 60, 1005–1012 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Perrone, D., Farah, A. & Donangelo, C. M. Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew. J. Agric. Food Chem. 60, 4265–4275 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Sakamoto, K., Nishizawa, H. & Manabe, N. Behavior of pesticides in coffee beans during the roasting process. Shokuhin Eiseigaku Zasshi 53, 233–236 (2012). [Article in Japanese]

    Article  CAS  PubMed  Google Scholar 

  42. Hečimović, I., Belščak-Cvitanović, A., Horžić, D. & Komes, D. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem. 129, 991–1000 (2011).

    Article  PubMed  CAS  Google Scholar 

  43. Bicho, N. C. et al. Identification of nutritional descriptors of roasting intensity in beverages of Arabica and Robusta coffee beans. Int. J. Food Sci. Nutr. 62, 865–871 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Priftis, A. et al. Roasting has a distinct effect on the antimutagenic activity of coffee varieties. Mutat. Res. 829–830, 33–42 (2018).

    Article  CAS  Google Scholar 

  45. Liu, Z-S., Chen, P-W., Wang, J-Y. & Kuo, T-C. Assessment of Cellular Mutagenicity of Americano Coffees from Popular Coffee Chains. J. Food Protect. 80, 1489–1495 (2017).

    Article  Google Scholar 

  46. Kim, S. B., Hayase, F. & Kato, H. Desmutagenic effect of α-dicarbonyl and α-hydroxycarbonyl compounds against mutagenic heterocyclic amines. Mutat. Res. 177, 9–15 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. Whittaker, P. et al. Evaluation of the butter flavoring chemical diacetyl and a fluorochemical paper additive for mutagenicity and toxicity using the mammalian cell gene mutation assay in L5178Y mouse lymphoma cells. Food Chem. Toxicol. 46, 2928–2933 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. More, S. S., Raza, A. & Vince R. The butter flavorant, diacetyl, forms a covalent adduct with 2-deoxyguanosine, uncoils DNA, and leads to cell death. J. Agric. Food Chem. 60, 3311–3317 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Aeschbacher, H. U. et al. Contribution of coffee aroma constituents to the mutagenicity of coffee. Food Chem. Toxicol. 27, 227–232 (1989).

    Article  CAS  PubMed  Google Scholar 

  50. Jung, S. et al. Cellular Antioxidant and Anti-Inflammatory Effects of Coffee Extracts with Different Roasting Levels. J. Med. Food 20, 626–635 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Jeong, J. H. et al. Antioxidant and neuronal cell protective effects of columbia arabica coffee with different roasting conditions. Prev. Nutr. Food Sci. 18, 30–37 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Volz, N. et al. Effect of coffee combining green coffee bean constituents with typical roasting products on the Nrf2/ARE pathway in vitro and in vivo. J. Agric. Food Chem. 60, 9631–9641 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Lizarraga, I. et al. Effect of butanedione monoxime on the contractility of guinea pig ileum and on the electro-physiological activity of myenteric S-type neurones. Neurosci. Lett. 246, 105–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Zhou, Y. et al. Amphiregulin, an epidermal growth factor receptor ligand, plays an essential role in the pathogenesis of transforming growth factor-β-induced pulmonary fibrosis. J. Biol. Chem. 287, 41991–42000 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hubbs, A. F. et al. Respiratory and olfactory cytotoxicity of inhaled 2,3-pentanedione in Sprague-Dawley rats. Am. J. Pathol. 181, 829–844 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Morgan, D. L. et al. Bronchial and bronchiolar fibrosis in rats exposed to 2,3-pentanedione vapors: implications for bronchiolitis obliterans in humans. Toxicol. Pathol. 40, 448–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Gloede, E., Cichocki, J. A., Baldino, J. B. & Morris, J. B. A validated hybrid computational fluid dynamics-physiologically based pharmacokinetic model for respiratory tract vapor absorption in the human and rat and its application to inhalation dosimetry of diacetyl. Toxicol. Sci. 123, 231–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Colley, J. et al. Acute and short-term toxicity of diacetyl in rats. Food Cosmet. Toxicol. 7, 571–580 (1969).

    Article  CAS  PubMed  Google Scholar 

  59. Hubbs, A. F. et al. Respiratory toxicologic pathology of inhaled diacetyl in Sprague-Dawley rats. Toxicol. Pathol. 36, 330–344 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Ishimori, N. et al. Roasting Enhances the Anti-Cataract Effect of Coffee Beans: Ameliorating Selenite-Induced Cataracts in Rats. Curr. Eye Res. 42, 864–870 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Morgan, D. L. et al. Gene expression in obliterative bronchiolitis-like lesions in 2,3-pentanedione-exposed rats. PLoS One 10, e0118459 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Danger, R. et al. Blood gene expression Predicts Bronchiolitis Obliterans syndrome. Frontiers in Immunology. http://www.frontiersin.org 8, Article 1841 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. NIOSH, Health Hazard Evaluation Report. HETA 85-171-1710. International Bakers Services, Inc., South Bend, Indiana, USA (1985).

  64. Duling, M. G. et al. Environmental characterization of a coffee processing workplace with obliterative bronchiolitis in former workers. J. Occup. Environ. Hyg. 13, 770–781 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harvey, R. et al. Flavoring-Related Lung Disease in a Worker at a Coffee Roasting and Packaging Facility. C106 OCCUPATIONAL LUNG EPIDEMIOLOGY. Poster Discussion Session, Marriott Marquis San Diego Marina. Am. J. Resp. Crit. Care Med. 197, A6075 (2018).

    Google Scholar 

  66. Poisson, L. et al. New Insight into the Role of Sucrose in the Generation of α-Diketones upon Coffee Roasting. J. Agric. Food Chem. 66, 2422–2431 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. McCoy, M. J. et al. Diacetyl and 2,3-pentanedione in breathing zone and area air during large-scale commercial coffee roasting, blending and grinding processes. Toxicol. Rep. 4, 113–122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gaffney, S. H. et al. Naturally occurring diacetyl and 2,3-pentanedione concentrations associated with roasting and grinding unflavored coffee beans in a commercial setting. Toxicol Rep. 2, 1171–1181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moon, J. K. & Shibamoto, T. Role of roasting conditions in the profile of volatile flavor chemicals formed from coffee beans. J. Agric. Food Chem. 57, 5823–5831 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Moon, J. K., Yoo, H. S. & Shibamoto, T. Role of roasting conditions in the level of chlorogenic acid content in coffee beans: correlation with coffee acidity. J. Agric. Food Chem. 57, 5365–5369 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Sulaiman, S. F., Moon, J. K. & Shibamoto, T. Investigation of optimum roasting conditions to obtain possible health benefit supplement, antioxidants from coffee beans. J. Diet Suppl. 8, 293–310 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Perrone, D., Donangelo, R., Donangelo, C. M. & Farah, A. Modeling weight loss and chlorogenic acids content in coffee during roasting. J. Agric. Food Chem. 58, 12238–12243 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Abaya, S. W. et al. Personal Dust Exposure and Its Determinants among Workers in Primary Coffee Processing in Ethiopia. Ann. Work Expo. Health 62, 1087–1095 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kocadağlı, T., Göncüoğlu, N., Hamzalıoğlu, A. & Gökmen, V. In depth study of acrylamide formation in coffee during roasting: role of sucrose decomposition and lipid oxidation. Food Funct. 3, 970–975 (2012).

    Article  PubMed  CAS  Google Scholar 

  75. Kumar, J., Das S. & Teoh, S. L. Dietary Acrylamide and the Risks of Developing Cancer: Facts to Ponder. Front. Nutr. 5, 14 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nkondjock, A. et al. Coffee consumption and the risk of cancer: An overview. Cancer Lett. 277, 121–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Nkondjock, A. et al. Coffee and cancers. in (ed Chu Y.-F.), Coffee: Emerging Health Effects and Disease Prevention, Chu, Y.-F. (Ed.). 197–209. Ames, IA: IFT Press (Willy-Blackwell. 2011).

    Google Scholar 

  78. Turesky, R. J. et al. The pro- and antioxidative effects of coffee and its impact on health. Colloque Scientifique International sur le Cafe 15th (Vol. 2), pp. 426–432 (Paris, France: ASIC, 1993).

    Google Scholar 

  79. Miller, E. G. et al. The anticancer activity of coffee beans. ACS Symposium Series, 754 (Caffeinated Beverages), pp. 56–63. Washington, DC: American Chemical Society; Book of Abstracts, 217th ACS National Meeting (Anaheim, CA, AGFD-083, 1999).

    Google Scholar 

  80. Budhathoki, S. et al. Coffee intake and the risk of colorectal adenoma: The colorectal adenoma study in Tokyo. Int. J. Cancer 137, 463–470 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Sinha, R. et al. Caffeinated and decaffeinated coffee and tea intakes and risk of colorectal cancer in a large prospective study. Am. J. Clin. Nutr. 96, 374–381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Isshiki, M. et al. Coffee reduces SULT1E1 expression in human colon carcinoma Caco-2 cells. Biol. Pharm. Bull. 36, 299–304 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Okamura, S. et al. The effects of coffee on conjugation reactions in human colon carcinoma cells. Biol. Pharm. Bull. 28, 271–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Higgins, L. G. et al. Induction of cancer chemopreventive enzymes by coffee is mediated by transcription factor Nrf2. Evidence that the coffee-specific diterpenes cafestol and kahweol confer protection against acrolein. Toxicol. Appl. Pharmacol. 226, 328–337 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Merritt, M. A. et al. Coffee drinking and endometrial cancer. Curr. Nutr. Rep. 4, 40–46 (2015).

    Article  CAS  Google Scholar 

  86. Je, Y. et al. A prospective cohort study of coffee consumption and risk of endometrial cancer over a 26-year follow-up. Cancer Epidemiol. Biomarkers Prev. 20, 2487–2495 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bravi, F. et al. Coffee and the risk of hepatocellular carcinoma and chronic liver disease: a systematic review and meta-analysis of prospective studies. Eur. J. Cancer Prev. 26, 368–377 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Lai, G. Y. et al. The association of coffee intake with liver cancer incidence and chronic liver disease mortality in male smokers. Br. J. Cancer 109, 1344–1351 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nishikawa, A. et al. An inhibitory effect of coffee on nitrosamine-hepatocarcinogenesis with aminopyrine and sodium nitrite in rats. J. Nutr. Growth Cancer 3, 161–166 (1986).

    CAS  Google Scholar 

  90. Miura, Y. et al. Inhibitory effect of coffee on hepatoma proliferation and invasion in culture and on tumor growth, metastasis and abnormal lipoprotein profiles in hepatoma-bearing rats. J. Nutr. Sci. Vitaminol. 50, 38–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Gressner, O. A. et al. Less Smad2 is good for you! A scientific update on coffee’s liver benefits. Hepatology 50, 970–978 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Baker, J. A. et al. Consumption of coffee, but not black tea, is associated with decreased risk of premenopausal breast cancer. J. Nutr. 136, 166–171 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Lowcock, E. C. et al. High coffee intake, but not caffeine, is associated with reduced estrogen receptor negative and postmenopausal breast cancer risk with no effect modification by CYP1A2 genotype. Nutr. Cancer 65, 398–409 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Rosendahl, A. H. et al. Caffeine and caffeic acid inhibit growth and modify estrogen receptor and insulin-like growth factor I receptor levels in human breast cancer. Clin. Cancer Res. 21, 1877–1887 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Hsu, W. L. et al. Lowered risk of nasopharyngeal carcinoma and intake of plant vitamin, fresh fish, green tea and coffee: A case-control study in Taiwan. PLoS One 7, e41779 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hildebrand, J. S. et al. Coffee, tea, and fatal oral/pharyngeal cancer in a large prospective US cohort. Am. J. Epidemiol. 177, 50–58 (2013).

    Article  PubMed  Google Scholar 

  97. Galeon, G. et al. Coffee and tea Intake and risk of head and neck cancer: Pooled analysis in the international head and neck cancer epidemiology consortium. Cancer Epidemiol. Biomarkers Prev. 19, 1723–1736 (2010).

    Article  CAS  Google Scholar 

  98. Miller, E. G. et al. Inhibition of oral carcinogenesis by roasted coffee beans and roasted coffee bean fractions. 15th Colloque Scientifique International sur le Cafe (Vol. 2), pp. 420–425. (Montpellier, France: ASIC, 1993).

    Google Scholar 

  99. Holick, C. N. et al. Coffee, tea, caffeine intake, and risk of adult glioma in three prospective cohort studies. Cancer Epidemiol. Biomarkers Prev. 19, 39–47 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Loftfield, E. et al. Coffee drinking and cutaneous melanoma risk in the NIH-AARP diet and health study. J. Natl. Cancer Inst. 107, dju421 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Coffee consumption associated with reduced risk of advanced prostate cancer. Science News, December 8 (2009).

  102. Kolberg, M. et al. Coffee inhibits nuclear factor-kappa B in prostate cancer cells and xenografts. J. Nutr. Biochem. 27, 153–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Abraham, S. K. et al. Anti-genotoxicity and glutathione S-transferase activity in mice pretreated with caffeinated and decaffeinated coffee. Food Chem. Toxicol. 37, 733–739 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Ramalakshmi, K. et al. Bioactivities of low-grade green coffee and spent coffee in different in vitro model systems. Food Chem. 115, 79–85 (2009).

    Article  CAS  Google Scholar 

  105. George, S. E. et al. A perception on health benefits of coffee. Crit. Rev. Food Sci. Nutr. 48, 464–486 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Seow, W. J., Jin, A., Yuan, J-M. & Koh, W-P. Abstract 5318: Intake of tea and tea flavonoids, coffee and caffeine in relation to risk of lung cancer - the Singapore Chinese Health Study. Proceedings: AACR Annual Meeting (Washington, DC, 2017).

  107. Schlesinger, C., Meyer, C., Veeraraghavan, S. & Koss, M. Constrictive (obliterative) bronchiolitis: diagnosis, etiology, and a critical review of the literature. Ann. Diagn. Pathol. 2, 321–334 (1998). doi:https://doi.org/10.1016/S1092-9134(98)80026-9.PMID9845757.

    Article  CAS  PubMed  Google Scholar 

  108. CDC. Flavorings-Related Lung Disease: Exposures to Flavoring Chemicals - NIOSH Workplace Safety and Health Topic. Archived from the original on 17 December 2015.

  109. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. Evaluation of exposures and respiratory health at a coffee roasting and packaging facility and associated café. Report No. 2016-0067-3313 (2018).

  110. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. Evaluation of exposures and respiratory health at a coffee roasting and packaging facility. Report No. 2015-0082-3287 (2017).

  111. Matthew, G. et al. Environmental characterization of a coffee processing workplace with obliterative bronchiolitis in former workers. J. Occup. Environ. Hyg. 13, 770–781 (2016).

    Article  CAS  Google Scholar 

  112. ACGIH. Documentation of the Threshold Limit Values and Biological Exposure Indices, 7th Edition, Supplement (2013).

  113. Schmees, D. K., Wu, Y-H. & Vincent J. H. Visualization of the Airflow around a Life-Sized, Heated, Breathing Mannequin at Ultralow Windspeeds. Ann. Occup. Hyg. 52, 351–360 (2008).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Korean Occupational Safety and Health Agency (Ulsan, Republic of Korea), the Ministry of Employment and Labor (Sejong, Republic of Korea), and a Grant-in-Aid for chemical hazard evaluation (2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Taek Rim.

Ethics declarations

Conflict of Interest Kyung-Taek Rim declares that he has no conflicts of interest.

Ethical Approval This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rim, KT. Coffee Roasters and Their Occupational Lung Disease: A Literature Review. Toxicol. Environ. Health Sci. 11, 175–184 (2019). https://doi.org/10.1007/s13530-019-0403-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-019-0403-7

Keywords

Navigation