Histopathological Effects of Bisphenol A on Soft Tissues of Corbicula fluminea Mull

  • Kimberly B. BenjaminEmail author
  • Elisa L. Co
  • Jessmine L. Competente
  • Dyan Gabrielle H. de Guzman



Bisphenol A (BPA), a commonly occurring industrial chemical that is present in polycarbonate plastics and epoxy resins is mechanistically shown to affect various bodily functions of organisms. However, very limited studies have been done on the histological effects of BPA on bivalves. In this study, the toxicity of BPA was analyzed through its histological effects on the gills, digestive glands and adductor muscles of Corbicula fluminea, a freshwater bivalve.


Forty C. fluminea were exposed to set-ups with 1 µg/L, 2 µg/L and 3 µg/L of BPA for twenty-one days. Afterwhich, histolopathological analysis were done in the adductor muscles, digestive glands and gills of the clam. Histological alterations such as vacuolations, necrosis, lamellar deformation, hyperplasia, loss of epithelium, necrosis, tubular alteration, neoplasia, hemocyte infiltration, hypertrophy and pyknosis were observed and percent histological aberrations were determined per organ.


Results showed that there was a significant difference in the histological alterations observed between the tissues of exposed and unexposed clams. Moreover, varying concentrations of BPA rendered differential degree of histological damage on the soft tissues of the clam. The digestive gland was the most affected tissues followed by the gill then the adductor muscles.


BPA were found to be toxic to C. fluminea as evidenced by histology. Moreover, the differential histological responses of the tissues of C. fluminea in different concentrations of BPA proves that they are good indicators of environmental stressors such as BPA.


Corbicula fluminea Histology Adductor muscles Digestive gland Gills Bisphenol-A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors are thankful to the Department of Biology, University of the Philippines Manila for providing required laboratory facilities for this work.


  1. 1.
    Flint, S., Markle, T., Thompsin, S. & Wallace, E. Bisphenol A exposure, effects and policy: A wildlife perspective — a Review. J. of Environ. Mngt. 104, 19–34 (2012).CrossRefGoogle Scholar
  2. 2.
    Stahlhut, R. W., Welshons, W. V. & Swan, S. H. Bisphenol-A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ. Health Perspect. 117, 784–789 (2009).CrossRefGoogle Scholar
  3. 3.
    Oehlmann, J., Schulte-Oehlmann, U., Tillmann, M. & Markert, B. Effects of endocrine disruptors on proso-branch snails (Mollusca: Gastropoda) in the laboratory. Part I: Bisphenol A and octylphenol as xeno-estrogens. Ecotoxicol. 9, 383–397 (2000).CrossRefGoogle Scholar
  4. 4.
    Crain, D. A. et al. An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod. Toxicol. 24, 225–239 (2007).CrossRefGoogle Scholar
  5. 5.
    Oehlmann, J. et al. A critical analysis of the biological impacts of plasticizers on wildlife. Phil. Trans. R. Soc. B 364, 2047–2062 (2009).CrossRefGoogle Scholar
  6. 6.
    Ike, M., Jin, C. S. & Fujita, M. Biodegradation of bisphenol A in aquatic environment. Water Sci. Technol. 42, 31–38 (2000).CrossRefGoogle Scholar
  7. 7.
    Kang, J. H., Aasi, D. & Katayama, Y. Bisphenol a in the aquatic environment and its endocrine-disruptive effects on aquatic organisms. Crit. Rev. Toxicol. 37, 607–625 (2007).CrossRefGoogle Scholar
  8. 8.
    Lehmann, D. W., Levine, J. F. & Law, J. M. Polychlorinated biphenyl exposure causes gonadal atrophy and oxidative stress in Corbicula fluminea clams. Toxic. Path. 35, 356–365 (2007).CrossRefGoogle Scholar
  9. 9.
    Oliveira, L. F., Silva, S. M. C. P. & Martinez, C. Assessment of domestic landfill leachate toxicity to the Asian clam Corbicula fluminea via biomarkers. Ecotoxicol. Environ. Saf. 103, 17–23 (2014).CrossRefGoogle Scholar
  10. 10.
    Santos, K. C. & Martinez, C. B. R. Genotoxic and biochemical effects of atrazine and Roundups, alone and in combination, on the Asian clam Corbicula fluminea. Ecotoxicol. Environ. Saf. 100, 7–14 (2014).CrossRefGoogle Scholar
  11. 11.
    Mantecca, P., Vailati, G. & Bacchetta, R. Histological changes and Micronucleus induction in the Zebra mussel Dreissena polymorpha afterparaquat exposure. Histol. Histopathol. 21, 829–840 (2006).Google Scholar
  12. 12.
    Beltran, K. S. & Pocsidio, G. N. Acetylcholinesterase activity in Corbicula fluminea Mull., as a biomarker of organophosphate pesticide pollution in Pinacanauan River, Philippines. Environ. Monit. Assess. 165, 331–340 (2010).CrossRefGoogle Scholar
  13. 13.
    Britton, J. C. & Morton, B. in A dissection guide, field and laboratory manual for the introduced bivalve Corbicula fluminea. Malacologia Rev. (Niwot, Colorado, U.S.A. 1982).Google Scholar
  14. 14.
    McMahon, R. F. in Ecology and classification of North American freshwater invertebrates (eds Thorp, J. H., Covich, A. P.) 331–430 2nd Edn. (Academic Press, San Diego, 2001).Google Scholar
  15. 15.
    Ruppert, E. E., Fox, R. S. & Barnes R. B. in Invertebrate Zoology, A functional evolutionary Approach 7th Edn. (Brooks Cole Thomson, Belmont California, 2004).Google Scholar
  16. 16.
    Graney, R. L., Cherry, D. S. & Cairns, J. Heavy metal indicator potential of the Asiatic clam Corbicula fluminea in aquatic ecosystems: An overview. Hydrobiologia 102, 81–88 (1983).CrossRefGoogle Scholar
  17. 17.
    Doherty, F. G. The Asiatic clam, Corbicula spp as a biological monitor in freshwater environments. Environ. Monit. Assess. 15, 143–181 (1990).CrossRefGoogle Scholar
  18. 18.
    Colombo, J. C., Bilos, C., Campanaho, M., Presa, M. J. R. & Catoggio, J. A. Bioaccumulation of polychlorinated-biphenys and chlorinated pesticides by the Asiatic Clam Corbicula fluminea—its use as sentinelorganism in the Rio-De-La-Plata Estuary, Argentina. Environ. Sci. Technol. 29, 914–927 (1995).CrossRefGoogle Scholar
  19. 19.
    Labrot, F., Narbonne, J. F., Ville, P., Saint Denis, M. & Ribera, D. Acute toxicity, toxicokinetics, and tissue target of lead and uranium in the clam Corbicula fluminea and the worm Eisenia fetida: comparison with the fish Bradydanio rerio. Arch. Environ. Contam. Toxicol. 36, 167–178 (1999).CrossRefGoogle Scholar
  20. 20.
    Fournier, E., Adam, C., Massabuau, J. C. & Garnier-La-place, J. Bioaccumulation of waterborne selenium in the Asiatic clam Corbicula fluminea: influence of feeding induced ventilatory activity and seleniumspecies. Aquat. Toxicol. 72, 251–260 (2005).CrossRefGoogle Scholar
  21. 21.
    Way, C. M., Hornback, D. J., Miller-War, C. A., Payne, B. S. & Miller, A. C. Dynamics of filter feeding in Corbicula flumnea (Bivalvia: Corbiculidae). Can. J. Zool. 68, 115–120 (1990).CrossRefGoogle Scholar
  22. 22.
    Bassack, S. B., Oneto, M. L., Verrengia-Guerrero, N. R. & Kesten, E. M. Accumulation and elimination of pentachlorophenol in the freshwater bivalve Corbicula fluminea. Bull. Environ. Contam. Toxicol. 58, 497–503 (1997).CrossRefGoogle Scholar
  23. 23.
    Baudrimont, M., Lemaire-Gony, S, Ribeyre, F., Metivaud, J. & Boudou, A. Seasonal variations of metallothionine concentrations in the Asiatic clam (Corbicula fluminea). Comp. Biochem. Physiol. C 118, 361–367 (1997).Google Scholar
  24. 24.
    Inza, B., Ribeyre, F., Maury-Brachet, R. & Boudou, A. Tissue distribution of inorganic mercury, methyl-mercury and cadmium in the Asiatic clam (Corbicula fluminea) in relation to the contamination levels of the water columnand sediment. Chemosphere 35, 2817–2836 (1997).CrossRefGoogle Scholar
  25. 25.
    Narbonne, J. F., Djomo, J. E., Ribera, D., Ferrier, V. & Garrigues, P. Accumulation kinetics of polycyclic aromatic hydrocarbon adsorbed to sediment by the mollusk Corbicula fluminea. Ecotoxicol. Environ. Saf. 42, 1–8 (1999).CrossRefGoogle Scholar
  26. 26.
    Tran, D., Boudou, A. & Massabuau, J. C. How water oxygenation levels influences cadmium accumulation pattern in Asiatic clam Corbicula fluminea: a laboratory and field study. Environ. Toxicol. Chem. 20, 2073–2080 (2001).CrossRefGoogle Scholar
  27. 27.
    Cataldo, D. H., Boltovskoy, D., Stripeikis, J. & Pose, M. Condition index and growth rates of field caged Corbicula fluminea (Bivalvia) as biomarkers of pollution gradients in the Paraná River delta (Argentina). Aquat. Ecosyst. Health Manage. 4, 187–201 (2001).CrossRefGoogle Scholar
  28. 28.
    Achard, M., Baudrimont, M., Boudou, A. & Bourdineaud, J. P. Induction of multixenobiotic resistance protein (MXR) in the Asiatic clam Corbicula fluminea after heavy metals exposure. Aquat. Toxicol. 67, 347–357 (2004).CrossRefGoogle Scholar
  29. 29.
    Sousa, R., Antunes, C. & Guilhermino, L. Ecology of the invasive Asian clam Corbicula fluminea in aquatic ecosystems: An overview. Int. J. Limnol. 44, 85–94 (2008).CrossRefGoogle Scholar
  30. 30.
    Hatel, A. et al. Adverse effects of Bisphenol A on reproductive physiology in male goldfish at environmentally relevant concentrations. Ecotoxicol. Environ. Saf. 76, 56–99 (2012).CrossRefGoogle Scholar
  31. 31.
    Yang, Y., Kim, S., Hong, Y., Ahn, J. & Park, M. Environmentally relevant levels of Bisphenol A may accelerate the development of type II diabetes mellitus in adolescent Otsuka Long Evans Tokushima fatty rats. Toxicol Environ. Health. Sci. 6, 41–47 (2014).CrossRefGoogle Scholar
  32. 32.
    Arriola, F. J. & Villaluz, D. K. Snail fishing and duck raising in Laguna de Bay, Luzon. Phil. J. Scie. 69, 173–187 (1939).Google Scholar
  33. 33.
    Iritani, N., Fukuda, E. & Inoguchi, K. Effect of feeding shellfish Corbicula fluminea on lipid metabolism in rat. Artherosclerosis 34, 41–48 (1979).CrossRefGoogle Scholar
  34. 34.
    Halarnkar, P. P., Chambers, J. D., Wakayama, E. J. & Bloomquist, G. J. Vitamin B12 levels and proprionate metabolism in selected non-insect arthropods and other invertebrates. Comp. Biochem. Physiol. B 88, 869–873 (1987).CrossRefGoogle Scholar
  35. 35.
    Hayashi, O., Kameshiro, M., Masuda, M. & Satoh, K. Bioaccumulation and metabolism of [14C] bisphenol a in the brackish water bivalve Corbicula japonica. Biosci. Biotechnol. Biochem. 72, 3219–3224 (2008).CrossRefGoogle Scholar
  36. 36.
    Kanapala, V. & Arasada, S. P. Histopathological effect of paraquat (gramoxene) on the digestive gland of fresh-water snail Lymnaea luteola (Lamarck: 1799) (mollusca: gastropoda). Int. J. Scien. Res. Environ. Sci. 1, 224–230 (2013).Google Scholar
  37. 37.
    Costa, P. M., Carreira, S., Costa, M. H. & Caeiro, S. Development of histopathological indices in a commercial marine bivalve (Ruditapes decussatus) to determine environmental quality. Aquat. Toxicol. 126, 442–454 (2013).CrossRefGoogle Scholar
  38. 38.
    Ziegler, U. & Groscurth, P. Morphological features of cell death. Physiology 19, 124–128 (2004).CrossRefGoogle Scholar
  39. 39.
    Goss, R. J. Hypertrophy versus hyperplasia. Science 153, 1615–1620 (1966).CrossRefGoogle Scholar
  40. 40.
    Zong, W. & Thompson, C. B. Necrotic death as a cell fate. Genes Dev. 20, 1–15 (2006).CrossRefGoogle Scholar
  41. 41.
    Leonard, J. A., Cope, W. G., Barnhart, M. C. & Bringolf, R. B. Metabolomic, behavioral, and reproductive effects of the synthetic estrogen 17 α-ethinylestradiol on the unionid mussel Lampsilis fasciola. Aquat. Toxicol. 150, 103–116 (2014).CrossRefGoogle Scholar
  42. 42.
    Payan, P. G., Stecco, A., Stern, R. & Stecco, C. Painful connections: Densification versus fibrosis of fascia. Curr. Pain Headache Rep. 18, 441 (2014).CrossRefGoogle Scholar
  43. 43.
    Kumar, S., Pandey, R. K. & Das, V. K. Dimethoate alters respiratory rate and gill histopathology in freshwater mussel Lamellidens marginalis (Lamarck). J. Appl. Biosci. 38, 154–158 (2012).Google Scholar
  44. 44.
    Abdel-Nabi, I. M., El-Shenawy, N. S., Taha, I. A. & Moawad, T. I. Oxidative stress biomarkers and bioconcentration of Reldan and Roundup by the edible clam, Ruditapes decussates. Curr. Zool. 53, 910–920 (2007).Google Scholar
  45. 45.
    El-Shenawy, N. S. et al. Histopathologic biomarker response of clam, Ruditapes decussates, to organophosphorous pesticides Reldan and Roundup: A Laboratory Study. Ocean Sci. J. 44, 27–34 (2009).CrossRefGoogle Scholar
  46. 46.
    Schmitt, P. et al. The antimicrobial defense of the pacific oyster, Crassostrea gigas. How diversity may compensate for scarcity in the regulation of resident/pathogenic microflora. Front. Microbiol. 3, 160 (2012).CrossRefGoogle Scholar
  47. 47.
    Fuller, J. K. in Surgical technology: principles and practice 6th Edn. (Elsevier Saunders, Missouri, 2013).Google Scholar
  48. 48.
    Ford, S., Kanaley, S. & Littlewood, D. Cellular responses of oysters infected with Haplosporidium nelsoni: changes in circulating and tissue-infiltrating hemocytes. J. Invertebr. Pathol. 61, 49–57 (2002).CrossRefGoogle Scholar
  49. 49.
    Suthar, H., Verma, R. J., Patel, S. & Jasrai, Y. T. Green tea potentially ameliorates bisphenol a-induced oxidative stress: An in vitro and in silico study. Biochem. Res. Int. 14, 1–9 (2014).CrossRefGoogle Scholar
  50. 50.
    Chen, W. Y. & Liao, C. M. Toxicokinetics/toxicodynamics links bioavailability for assessing arsenic uptake and toxicity in three aquaculture species. Environ. Sci. Pollut. Res. 19, 3868–3878 (2012).CrossRefGoogle Scholar
  51. 51.
    Auffret, M. Histopathological changes related to chemical contamination in Mytilus edulis from field and experimental conditions. Mar. Eco. Prog. Ser. 46, 101–107 (1999).CrossRefGoogle Scholar
  52. 52.
    Rodriguez-Ariza, A. et al. Uptake and clearance of PCB congeners in Chamaelea gallina: response of oxidative stress biomarkers. Compar. Biochem. Physiol. C 134, 57–67 (2003).Google Scholar

Copyright information

© The Korean Society of Environmental Risk Assessment and Health Science and Springer 2019

Authors and Affiliations

  • Kimberly B. Benjamin
    • 1
    Email author
  • Elisa L. Co
    • 1
  • Jessmine L. Competente
    • 1
  • Dyan Gabrielle H. de Guzman
    • 1
  1. 1.Department of Biology, College of Arts and SciencesUniversity of the Philippines ManilaManilaPhilippines

Personalised recommendations