Metagenomic Analysis of Bacterial Communities Associated with Four Ecklonia cava Populations, Including Dokdo Island Population

  • Yejin Jo
  • Yoon Sik Oh
  • Seonock Woo
  • Chan Hong Park
  • Seungshic YumEmail author



The dynamics of the Ecklonia cava-associated microbiota in four Korean populations, Dokdo Island (DI), Ulleungdo Island (UI), Sangbaekdo Island (SI), and Seogwipo, were investigated to provide the initial data on E. cava-bacteria interactions in different localities.


A pyrosequencing 454 analysis of the bacterial 16S rRNA genes was carried out, and the obtained sequences were analyzed by bioinformatic methods.


The Chao 1 index showed that the bacterial community richness was highest in the Seogwipo population, which contained more highly abundant bacteria than the other populations according to the ACE index. The Shannon diversity index showed that the UI population was highly diverse. Bacteria of the phylum Proteobacteria were most abundant in all four populations (49–94%). Fifty-two genera were identified in the four E. cava populations. The microbiota at DI was dominated by Granulosicoccus (17.33%) and HQ845450_g (10.67%); HQ845450_g (11.67%) and Rhodobacteraceae_uc (7.50%) were abundant in the UI population; HQ845450_g (25.32%), Streptococcus (11.39%), and Desulfomonile (11.39%) were dominant in the SI population; and Vibrio (44.91%) and AM259833_f_uc (16.37%) were dominant in the Seogwipo population. The genus Granulosicoccus was found in all four groups.


The microbiota in E. cava are largely dependent on the algal location, because only three bacterial operational taxonomic units (OTUs) were commonly found among the 850 bacterial sequences from four E. cava populations. The microbiota differences among the E. cava populations may contribute to seaweed forest conservation strategies at different locations.


Seaweed Brown alga Holobiont Microbiome Symbiosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by a grant from the Ministry of Oceans and Fisheries of the Korean Government as “A sustainable research and development of Dokdo” project.

Supplementary material

13530_2019_383_MOESM1_ESM.pdf (356 kb)
Metagenomic Analysis of Bacterial Communities Associated with Four Ecklonia cava Populations, Including Dokdo Island Population


  1. 1.
    Zehr, J. P., Jenkins, B. D., Short, S. M. & Steward, G. F. Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ. Microbiol. 5, 539–554, doi: Scholar
  2. 2.
    Stokes, R. W. et al. The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages. Infect. Immun. 72, 5676–5686, doi: (2004).CrossRefGoogle Scholar
  3. 3.
    Dash, H. R., Mangwani, N., Chakraborty, J., Kumari, S. & Das, S. Marine bacteria: potential candidates for enhanced bioremediation. Appl. Microbiol. Biotechnol. 97, 561–571, doi: (2013).CrossRefGoogle Scholar
  4. 4.
    Alderkamp, A. C., van Rijssel, M. & Bolhuis, H. Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan laminarin. FEMS Microbiol. Ecol. 59, 108–117, doi: (2007).CrossRefGoogle Scholar
  5. 5.
    Guiry, M. D. & Guiry, G. M. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway, (2018).Google Scholar
  6. 6.
    Kim, K. C. et al. Fucodiphlorethol G Purified from Ecklonia cava suppresses ultraviolet B radiation-induced oxidative stress and cellular damage. Biomol. Ther. (Seoul) 22, 301–307, doi: (2014).CrossRefGoogle Scholar
  7. 7.
    Park, M. H. et al. 6,6′-bieckol isolated from Ecklonia cava protects oxidative stress through inhibiting expression of ROS and proinflammatory enzymes in high-glucose-induced human umbilical vein endothelial cells. Appl. Biochem. Biotechnol. 174, 632–643, doi: (2014).CrossRefGoogle Scholar
  8. 8.
    Jang, S. K. et al. The anti-aging properties of a human placental hydrolysate combined with dieckol isolated from Ecklonia cava. BMC Complement. Altern. Med. 15, 345, doi: (2015).CrossRefGoogle Scholar
  9. 9.
    Choi, B. W., Lee, H. S., Shin, H. C. & Lee, B. H. Multifunctional activity of polyphenolic compounds associated with a potential for Alzheimer’s disease therapy from Ecklonia cava. Phytother. Res. 29, 549–553, doi: (2015).CrossRefGoogle Scholar
  10. 10.
    Park, E. Y. et al. Polyphenol-rich fraction of Ecklonia cava improves nonalcoholic fatty liver disease in high fat diet-fed mice. Mar. Drugs 13, 6866–6883, doi: (2015).CrossRefGoogle Scholar
  11. 11.
    Yamashita, H., Goto, M., Matsui-Yuasa, I. & Kojima-Yuasa, A. Ecklonia cava polyphenol has a protective effect against ethanol-induced liver injury in a cyclic AMP-dependent manner. Mar. Drugs 13, 3877–3891, doi: (2015).CrossRefGoogle Scholar
  12. 12.
    You, H. N., Lee, H. A., Park, M. H., Lee, J. H. & Han, J. S. Phlorofucofuroeckol A isolated from Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice. Eur. J. Pharmacol. 752, 92–96, doi: (2015).CrossRefGoogle Scholar
  13. 13.
    Singh, R. P. & Reddy, C. R. Seaweed-microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiol. Ecol. 88, 213–230, doi: (2014).CrossRefGoogle Scholar
  14. 14.
    Egan, S. et al. The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol. Rev. 37, 462–476, doi: (2013).CrossRefGoogle Scholar
  15. 15.
    de Oliveira, L. S. et al. Molecular mechanisms for microbe recognition and defense by the red seaweed Laurencia dendroidea. mSphere 2, doi: (2017).
  16. 16.
    Hughes, J. B., Hellmann, J. J., Ricketts, T. H. & Bohannan, B. J. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67, 4399–4406 (2001).CrossRefGoogle Scholar
  17. 17.
    Lemos, L. N., Fulthorpe, R. R., Triplett, E. W. & Roesch, L. F. Rethinking microbial diversity analysis in the high throughput sequencing era. J. Microbiol. Methods 86, 42–51, doi: (2011).CrossRefGoogle Scholar
  18. 18.
    Lee, K., Lee, H. K., Choi, T. H., Kim, K. M. & Cho, J. C. Granulosicoccaceae fam. nov., to include Granulosicoccus antarcticus gen. nov., sp. nov., a non-phototrophic, obligately aerobic chemoheterotroph in the order Chromatiales, isolated from Antarctic seawater. J. Microbiol. Biotechnol. 17, 1483–1490 (2007).Google Scholar
  19. 19.
    Imhoff, J. F. in Bergey’s Manual of Systematic Bacteriology, vol. 2 (The Proteobacteria) (eds Brenner, D. J., Krieg, N. R., Staley, J. T. & Garrity, G. M.) 1–3 (Williams & Wilkins, Baltimore, 2005).Google Scholar
  20. 20.
    Kurilenko, V. V. et al. Granulosicoccus coccoides sp. nov., isolated from leaves of seagrass (Zostera marina). Int. J. Syst. Evol. Microbiol. 60, 972–976, doi: (2010).CrossRefGoogle Scholar
  21. 21.
    Romanenko, L. A., Tanaka, N., Frolova, G. M. & Mikhailov, V. V. Arenicella xantha gen. nov., sp nov., a gammaproteobacterium isolated from a marine sandy sediment. Int. J. Syst. Evol. Microbiol. 60, 1832–1836, doi: (2010).CrossRefGoogle Scholar
  22. 22.
    Lamas, C. C. & Eykyn, S. J. Blood culture negative endocarditis: analysis of 63 cases presenting over 25 years. Heart 89, 258–262 (2003).CrossRefGoogle Scholar
  23. 23.
    Aslam, Z. et al. Methylobacterium jeotgali sp nov., a nonpigmented, facultatively methylotrophic bacterium isolated from jeotgal, a traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol. 57, 566–571, doi: (2007).CrossRefGoogle Scholar
  24. 24.
    Gromkova, R. C., Mottalini, T. C. & Dove, M. G. Genetic transformation in Haemophilus parainfluenzae clinical isolates. Curr. Microbiol. 37, 123–126, doi: (1998).CrossRefGoogle Scholar
  25. 25.
    Keith, E. R., Podmore, R. G., Anderson, T. P. & Murdoch, D. R. Characteristics of Streptococcus pseudopneumoniae isolated from purulent sputum samples. J. Clin. Microbiol. 44, 923–927, doi: (2006).CrossRefGoogle Scholar
  26. 26.
    Kawakami, H. et al. Late-onset bleb-related endophthalmitis caused by Streptococcus pseudopneumoniae. Int. J. Ophthalmol. 34, 643–646, doi: (2014).CrossRefGoogle Scholar
  27. 27.
    Espinosa, E. et al. Taxonomic study of Marinomonas strains isolated from the seagrass Posidonia oceanica, with descriptions of Marinomonas balearica sp nov and Marinomonas pollencensis sp nov. Int. J. Syst. Evol. Microbiol. 60, 93–98, doi: (2010).CrossRefGoogle Scholar
  28. 28.
    Wang, G. et al. Phylogenetic analysis of epiphytic marine bacteria on Hole-Rotten diseased sporophytes of Laminaria japonica. J. Appl. Phycol. 20, 403–409, doi: (2008).CrossRefGoogle Scholar
  29. 29.
    Voronina, O. L. et al. The variability of the order Burkholderiales representatives in the healthcare units. Biomed. Research International, doi: (2015).Google Scholar
  30. 30.
    Chun, J., Kim, K. Y., Lee, J. H. & Choi, Y. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol. 10, 101, doi: (2010).CrossRefGoogle Scholar
  31. 31.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200, doi: (2011).CrossRefGoogle Scholar
  32. 32.
    Kim, O. S. et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721, doi: (2012).CrossRefGoogle Scholar
  33. 33.
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541, doi: (2009).CrossRefGoogle Scholar
  34. 34.
    Hamady, M., Lozupone, C. & Knight, R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 4, 17–27, doi: (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Environmental Risk Assessment and Health Science and Springer 2019

Authors and Affiliations

  • Yejin Jo
    • 1
  • Yoon Sik Oh
    • 2
  • Seonock Woo
    • 3
  • Chan Hong Park
    • 4
  • Seungshic Yum
    • 1
    • 5
    Email author
  1. 1.Ecological Risk Research DivisionKorea Institute of Ocean Science and Technology (KIOST)GeojeRepublic of Korea
  2. 2.Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
  3. 3.Marine Biotechnology Research CenterKorea Institute of Ocean Science and Technology (KIOST)BusanRepublic of Korea
  4. 4.East Sea Research InstituteKorea Institute of Ocean Science and Technology (KIOST)UljinRepublic of Korea
  5. 5.Faculty of Marine Environmental ScienceUniversity of Science and Technology (UST)GeojeRepublic of Korea

Personalised recommendations