Toxicology and Environmental Health Sciences

, Volume 10, Issue 5, pp 278–287 | Cite as

Methylseleninic Acid and Grape Seed Extract Alleviate Tamoxifen Induce Hepatotoxicity in Rats

  • Nahed Mohamed A HassaneinEmail author
  • Azza Abdel-Fattah Ali
  • Amira Mohy El-Den El-Khawaga
Original article



The current study aimed to evaluate the hepatoprotective potential of methylseleninic acid (MSA) and grape seed extract on tamoxifen-induce hepatotoxicity in female rats.


Adult female Sprague-Dawely rats were randomly allocated into: control, dimethylsulfoxide (DMSO), Tam (30 mg/kg, for 10 days), GSE (600 mg/ kg), MSA (0.2 mg/kg) and GSE+MSA groups. Alanine aminotransferase (ALT) activity, malondialdehyde (MDA), reduced glutathione (GSH), catalase activity, nitric oxide (NO), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were detected. Histopathological examination of the liver and immunohistochemical staining of caspase-3 were performed.


Tamoxifen-induced liver injury in rats was successfully established. Tamoxifen significantly elevated hepatic catalase activity, MDA, nitric oxide contents, serum IL-6 and TNF-α levels. It significantly reduced serum ALT activity and hepatic protein content and significantly increased caspase-3 expression in the hepatic tissue. In addition, fatty changes, inflammatory cells infiltration and apoptosis were detected.

Administration of GSE or MSA as single protective treatment resulted in restoring serum ALT and hepatic catalase activities to their normal values. Single MSA restored hepatic MDA, NO and total protein contents to their normal values while GSE restored serum IL-6. Combined pre-treatment induced hepatoprotective effect, reversed all variables significantly to the normal levels. While rats’ liver pretreated with single GSE or MSA showed weak positive caspase-3 expression, combined pre-treatment rats showed absence of caspase- 3 expression as normal rats and exhibited normal liver architecture.


The results indicate significant modulatory effects of GSE and MSA combined treatment in overcoming and preventing the observed hepatotoxic adverse effects of tamoxifen.


Tamoxifen Hepatic injury Methylseleninic acid Grape seed extract 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jordan, V. C. Tamoxifen: a most unlikely pioneering medicine. Nat. Rev. Drug Discov. 2, 205–213 (2003).CrossRefGoogle Scholar
  2. 2.
    Kramer, R. & Brown, P. Should tamoxifen be used in breast cancer prevention? Drug Saf. 27, 979–989 (2004).CrossRefGoogle Scholar
  3. 3.
    Nishino, M., Hayakawa, K., Nakamura, Y., Morimoto, T. & Mukaihara, S. Effects of tamoxifen on hepatic fat content and the development of hepatic steatosis in patients with breast cancer: high frequency of involvement and rapid reversal after completion of tamoxifen therapy. Am. J. Roentgenol. 180, 129–134 (2003).CrossRefGoogle Scholar
  4. 4.
    Singh, M. S., Francis, P. A. & Michael, M. Tamoxifen, cytochrome P450 genes and breast cancer clinical outcomes. Breas. 20, 111–118 (2011).CrossRefGoogle Scholar
  5. 5.
    Yang, Y. J. et al. Clinical significance of fatty liver disease induced by tamoxifen and toremifene in breast cancer patients. Breas. 28, 67–72 (2016).CrossRefGoogle Scholar
  6. 6.
    Miyamura, M., Yokota, J. & Saibara, T. Drug–induced Nonalcoholic Steatohepatitis. Yakugaku Zassh. 136, 579–582 (2016).CrossRefGoogle Scholar
  7. 7.
    Massart, J. et al. Drug–induced inhibition of mitochondrial fatty acid oxidation and steatosis. Curr. Pathobiol. Rep. 1, 147–157 (2013).CrossRefGoogle Scholar
  8. 8.
    Satapathy, S. K., Kuwajima, V., Nadelson, J., Atiq, O. & Sanyal, A. J. Drug–induced fatty liver disease: an overview of pathogenesis and management. Ann. Hepatol. 14, 789–806 (2015).CrossRefGoogle Scholar
  9. 9.
    Miele, L. et al. Fatty liver and drugs: the two sides of the same coin. Eur. Rev. Med. 21, 86–94 (2017).Google Scholar
  10. 10.
    Kaur, M., Agarwal, C. & Agarwal, R. Anticancer and cancer chemopreventive potential of grape seed extract and other grape–based products. J. Nutr. 139, 1806S–1812S (2009).CrossRefGoogle Scholar
  11. 11.
    Alía, M., Horcajo, C., Bravo, L. & Goya, L. Effect of grape antioxidant dietary fiber on the total antioxidant capacity and the activity of liver antioxidant enzymes in rats. Nutr. Res. 23, 1251–1267 (2003).CrossRefGoogle Scholar
  12. 12.
    Yousef, M. I., Saad, A. A. & El–Shennawy L. K. Protective effect of grape seed proanthocyanidin extract against oxidative stress induced by cisplatin in rats. Food Chem. Toxicol. 47, 1176–1183 (2009).CrossRefGoogle Scholar
  13. 13.
    Ahmad, S. F. et al. Grape seed proanthocyanidin extract protects against carrageenan–induced lung inflammation in mice through reduction of pro–inflammatory markers and chemokine expressions. Inflammatio. 37, 500–511 (2014).CrossRefGoogle Scholar
  14. 14.
    Chu, H., Tang, Q., Huang, H., Hao, W. & Wei, X. Grape–seed proanthocyanidins inhibit the lipopolysaccharide–induced inflammatory mediator expression in RAW264.7 macrophages by suppressing MAPK and NF–?B signal pathways. Environ. Toxicol. Pharmacol. 41,159–166 (2016).CrossRefGoogle Scholar
  15. 15.
    Mantena, S. K., Baliga, M. S. & Katiyar, S. K. Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells. Carcinogenesi. 27, 1682–1691 (2006).CrossRefGoogle Scholar
  16. 16.
    Lu, J., Zhang, K., Chen, S. & Wen, W. Grape seed extract inhibits VEGF expression via reducing HIF–1 {alpha} protein expression. Carcinogenesi. 30, 636–644 (2009).CrossRefGoogle Scholar
  17. 17.
    Feng, L. L., Liu, B. X., Zhong, J. Y., Sun, L. B. & Yu, H. S. Effect of grape procyanidins on tumor angiogenesis in liver cancer xenograft models. Asian Pac. J. Cancer Prev. 15, 737–741 (2014).CrossRefGoogle Scholar
  18. 18.
    Sharma, G., Tyagi, A. K., Singh, R. P., Chan, D. C. & Agarwal, R. Synergistic anti–cancer effects of grape seed extract and conventional cytotoxic agent doxorubicin against human breast carcinoma cells. Breast Cancer Res. Treat. 85, 1–12 (2004).CrossRefGoogle Scholar
  19. 19.
    Chen, Y. C., Prabhu, K. S., Das, A. & Mastro, A. M. Dietary selenium supplementation modifies breast tumor growth and metastasis. Int. J. Cance. 133, 2054–2064 (2013).CrossRefGoogle Scholar
  20. 20.
    Li, Z., Carrier, L. & Rowan, B. G. Methylseleninic acid synergizes with tamoxifen to induce caspase–mediated apoptosis in breast cancer cells. Mol. Cancer Ther. 7, 3056–3063 (2008).CrossRefGoogle Scholar
  21. 21.
    Ramoutar, R. R. & Brumaghim, J. L. Antioxidant and anticancer properties and mechanisms of inorganic selenium, oxo–sulfur, and oxo–selenium compounds. Cell Biochem. Biophys. 58, 1–23 (2010).CrossRefGoogle Scholar
  22. 22.
    Li, W. et al. Selenium induces an anti–tumor effect via inhibiting intratumoral angiogenesis in a mouse model of transplanted canine mammary tumor Cells. Biol. Trace Elem. Res. 171, 371–379 (2016).CrossRefGoogle Scholar
  23. 23.
    Bhattacharya, A. Methylselenocysteine: a promising antiangiogenic agent for overcoming drug delivery barriers in solid malignancies for therapeutic synergy with anticancer drugs. Expet. Opin. Drug Deliv. 8, 749–763 (2011).CrossRefGoogle Scholar
  24. 24.
    Liu, Y., Li, W., Guo, M., Li, C. & Qiu, C. Protective role of selenium compounds on the proliferation, apoptosis, and angiogenesis of a canine breast cancer cell line. Biol. Trace Elem. Res. 169, 86–93 (2016).CrossRefGoogle Scholar
  25. 25.
    Park, J. M., Kim, A., Oh, J. H. & Chung, A. S. Methylseleninic acid inhibits PMA–stimulated pro–MMP–2 activation mediated by MT1–MMP expression and further tumor invasion through suppression of NF–?B activation. Carcinogenesi. 28, 837–847 (2007).CrossRefGoogle Scholar
  26. 26.
    Reitman, A. & Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Amer. J. Clin. Path. 28, 56–63 (1957).CrossRefGoogle Scholar
  27. 27.
    Evans, R. C. & Dipolck, A. T. in Techniques in free radical research (eds Burtn, R. H. & Knippenberg, P. H.) 199–201 (The Netherlands, Elsevier, 1991).Google Scholar
  28. 28.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 193, 265–275 (1951).Google Scholar
  29. 29.
    Ellman, G. L. Tissue sulphydryl groups. Arch. Biochem. Biophys. 82, 70–77 (1959).CrossRefGoogle Scholar
  30. 30.
    Nurrochmad, A., Hakim, A. R., Margono, S. A., Sardjiman, S. & Yniarti, N. Evaluation of hepatoprotective and antioxidant activity of Hexagamavunon–1 against carbon tetrachlorideinduced hepatic injury in rats. Int. J. Pharmacy Pharm. Sci. 2, 45–48 (2010).Google Scholar
  31. 31.
    Mihara, M. & Uchiyama, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 86, 271–278 (1978).CrossRefGoogle Scholar
  32. 32.
    Miranda, K. M., Espey, M. G. & Wink, D. A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxid. 5, 62–71 (2001).CrossRefGoogle Scholar
  33. 33.
    Li, S., Hong, M., Tan, H. Y., Wang, N. & Feng, Y. Insights into the role and interdependence of oxidative stress and inflammation in liver diseases. Oxid. Med. Cell Longev. 2016, doi: 10.1155/2016/4234061 (2016).Google Scholar
  34. 34.
    Van Hoof, M., Rahier, J. & Horsmans, Y. Tamoxifen–induced steatohepatitis. Ann. Intern. Med. 124, 855–856 (1996).CrossRefGoogle Scholar
  35. 35.
    Järvinen, L. S., Pyrhönen, S., Kairemo, K. J. & Paavonen, T. The effect of anti–oestrogens on cytokine production in vitro. Scand. J. Immunol. 44, 15–20 (1996).CrossRefGoogle Scholar
  36. 36.
    Suddek, G. M. Allicin enhances chemotherapeutic response and ameliorates tamoxifen–induced liver injury in experimental animals. Pharm. Biol. 52, 1009–1014 (2014).CrossRefGoogle Scholar
  37. 37.
    Fromenty, B., Robin, M. A., Igoudjil, A., Mansouri, A. & Pessayre, D. The ins and outs of mitochondrial dysfunction in NASH. Diabetes Metab. 30, 121–138 (2004).CrossRefGoogle Scholar
  38. 38.
    Le Couteur, D. G. et al. The association of alanine transaminase with aging, frailty, and mortality. J. Gerontol. A Biol. Sci. Med. Sci. 65, 712–717 (2010).CrossRefGoogle Scholar
  39. 39.
    Rahate, K. P. & Rajasekaran, A. Hepatoprotection by active fractions from Desmostachya bipinnata stapf (L.) against tamoxifen–induced hepatotoxicity. Indian J. Pharmacol. 47, 311–315 (2015).CrossRefGoogle Scholar
  40. 40.
    Nazarewicz, R. R. et al. Tamoxifen induces oxidative stress and mitochondrial apoptosis via stimulating mitochondrial nitric oxide synthase. Cancer Res. 67, 1282–1290 (2007).CrossRefGoogle Scholar
  41. 41.
    Hon, W. M., Lee, K. H. & Khoo, H. E. Nitric oxide in liver diseases: friend, foe, or just passerby? Acad. Sci. 962, 275–295 (2002).CrossRefGoogle Scholar
  42. 42.
    Charalambous, C., Pitta, C. A. & Constantinou, A. I. Equol enhances tamoxifen’s anti–tumor activity by induction of caspase–mediated apoptosis in MCF–7 breast cancer cells. BMC Cance. 13, doi: 10.1186/ 1471–2407–13–238 (2013).Google Scholar
  43. 43.
    Yeh, W. L., Lin, H. Y., Wu, H. M. & Chen, D. R. Combination treatment of tamoxifen with risperidone in breast cancer. PLoS ON. 9, doi: 10.1371/journal. pone.0098805 (2014).Google Scholar
  44. 44.
    Xu, Z. C. et al. Grape seed proanthocyanidin protects liver against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress. World J. Gastroenterol. 21, 7468–7477 (2015).CrossRefGoogle Scholar
  45. 45.
    Downing, L. E., Edgar, D., Ellison, P. A. & Ricketts, M. L. Mechanistic insight into nuclear receptor–mediated regulation of bile acid metabolism and lipid homeostasis by grape seed procyanidin extract (GSPE). Cell Biochem. Funct. 35, 12–32 (2017).CrossRefGoogle Scholar
  46. 46.
    Lin, K. N., Lin, M. L. & Wei, E. Q. Protective effect of grape seed proanthocyanidin on cultured RGC–5 cells against CoCl2–induced hypoxic injury. Zhejiang Da Xue Xue Bao Yi Xue Ba. 44, 24–29 (2015).Google Scholar
  47. 47.
    Wu, Y., Zhang, H., Dong, Y., Park, Y. M. & Ip, C. Endoplasmic Reticulum Stress Signal Mediators Are Targets of Selenium Action. Cancer Res. 65, 9073–9079 (2005).CrossRefGoogle Scholar
  48. 48.
    Gopalakrishna, R. & Gundimeda, U. Antioxidant regulation of protein kinase C in cancer prevention. J. Nutr. 132, 3819S–3823S (2002).CrossRefGoogle Scholar
  49. 49.
    Ghafourifar, P., Schenk, U., Klein, S. D. & Richter, C. Mitochondrial nitric–oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intra–mitochondrial peroxynitrite formation. J. Biol. Chem. 274, 1185–1188 (1999).CrossRefGoogle Scholar
  50. 50.
    Kassam, S., Juliger, S., Jia, L. & Joel, S. P. Methylseleninic acid antagonizes the cytotoxic effect of bortezomib in mantle cell lymphoma cell lines through modulation of Bcl–2 family proteins. Br. J. Haematol. 156, 286–289 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Society of Environmental Risk Assessment and Health Science and Springer Nature B.V. 2018

Authors and Affiliations

  • Nahed Mohamed A Hassanein
    • 1
    Email author
  • Azza Abdel-Fattah Ali
    • 2
  • Amira Mohy El-Den El-Khawaga
    • 1
  1. 1.Department of PharmacologyNational Organization for Drug Control and Research (NODCAR)GizaEgypt
  2. 2.Department of Pharmacology and Toxicology, Faculty of PharmacyEl Azhar UniversityCairoEgypt

Personalised recommendations