Skip to main content
Log in

Thorium Harmful Impacts on the Physiological Parameters of the Adult Male Albino Rats and Their Mitigation Using the Alginate

  • Original article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

Thorium-232 is a natural radionuclide from the actinide family, is abundantly present in monazite and other ores after thorium occupational or accidental exposures it deposited in many organs. The object of the study is to investigate thorium shortterm hazards effects on the male albino rate and study the alginate mitigation effect on thorium hazards.

Methods

Rats were grouped into control, Thorium (Th) and Th+Alginate(Alg) groups. The 54 rats of the different groups were decapitated (6 rats for each decapitation) after the 1st, 3rd, and 7th day during the treatment. Parameters of hematological (Hb, RBCs, indices, granular, lymphocytes), liver (GOT, GPT, Alb.), lipid (chol., trig.) kidney (creat., urea, uric acid) were determined after the determination of thorium distribution and accumulation in different organs.

Results

The results showed that the IP administration of 13.6 mg/kg b.wt. thorium nitrate (Th) for seven days produced an organs distribution of Th and accumulated in liver>brain>lipid>Kidney>heart>testes at the end of the experiment, also it induced a hematological, hepatic and lipid dysfunction with no effect on renal function. On the other hand, the oral administration of 5% alginate in the drinking water in parallel with Th injection could slightly reduce Th hazardous effects which may be due to alginate ability to inhibit many inflammatory factors that reduce the hemolysis in erythrocyte, reduce hepatocellular apoptosis, enhance the cholesterol excretion into the feces and also due to the antioxidant and chelating capacity of alginate to Th ions.

Conclusion

So, alginate administration could ameliorate Th short-term hazards effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veado, M. A. R. V. et al. Metal pollution in the environment of Minas Gerais State–Brazil. Environ. Monit. Assess. 117, 157–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Peng, C. et al. Influence of Speciation of Thorium on Toxic Effects to Green Algae Chlorella pyrenoidosa. Int. J. Mol. Sci. 18, doi: 10.3390/ijms18040795 (2017).

  3. Sheppard, S. C., Sheppard, M. I., Gallerand, M. O. & Sanipellia, B. Derivation of ecotoxicity thresholds for uranium. J. Environ. Radioact. 79, 55–83 (2005).

    Article  PubMed  Google Scholar 

  4. Rezk, M. M. A neuro–comparative study between single/ successive thorium dose intoxication and alginate treatment. Biol. Trace. Elem. Res. 185, 414–423 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Correa, L. M., Kochhann, D., Becker, A. G., Pavanato, M. A. & Llesuy, S. F. Biochemistry, cytogenetics and bioaccumulation in silver catfish (Rhamdia quelen) exposed to different thorium concentrations. Aquat. Toxicol. 88, 250–256 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Kochhann, D., Pavanato, M., Llesuy, S., Correa, L. & Riffel, L. R. Bioaccumulation and oxidative stress parameters in silver catfish (Rhamdia quelen) exposed to different thorium concentrations. Chemospher. 77, 384–391 (2009).

    Article  CAS  Google Scholar 

  7. Mernagh, T. P. & Miezitis, Y. A. in Review of the Geochemical Processes Controlling the Distribution of Thorium in the Earth’s Crust and Australia’s Thorium Resources (Geoscience Australia, Australia, 2007).

    Google Scholar 

  8. Davis, T. A., Volesky, B. & Mucci, A. A review of the biochemistry heavy metal biosorption by brown algae. Water Res. 37, 4311–4330 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Sosnik, A. Alginate particles as a platform for drug delivery by the oral route: state–of–the–Art. ISRN Pharm. 2014, doi.org/10.1155/2014/926157 (2014).

  10. Lee, K. Y. & Mooney, D. J. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Uno, T., Hattori, M. & Yoshida, T. Oral administration of alginic acid oligosaccharide suppresses IgE production and inhibits the induction of oral tolerance. Biosci. Biotechnol. Biochem.. 70, 3054–3057 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Kumar, A., Ali, M. & Pandey, B. Understanding the Biological Effects of Thorium and Developing Efficient Strategies for Its Decorporation and Mitigation. Bark Newsletter. 335, 55–56 (2013).

    Google Scholar 

  13. Kumar, A., Sharma, P., Ali, M., Pandey, B. & Mishra, B. Decorporation and therapeutic efficacy of liposomal–DTPA against thorium–induced toxicity in the Wistar rat. Inte. J. Radiat. Biol. 88, 223–229 (2012).

    Article  CAS  Google Scholar 

  14. Kumar, A., Ali, M., Pandey, B., Hassan, P. & Mishra, M. Role of membrane sialic acid and glycophorin protein in thorium induced aggregation and hemolysis of human erythrocytes. Biochimie. 92, 869–879 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Guyton, A. & Hall, J. E. in Text book of medical physiology (Elsevier Inc., Pennsylvania, 2006)

    Google Scholar 

  16. Du, A. L., Sabatié–Gogova, A, Morgenstern, A. & Montavon, G. Is DTPA a good competing chelating agent for Th(IV) in human serum and suitable for targeted alpha therapy? J. Inorg. Biochem. 109, 882–890 (2012).

    Google Scholar 

  17. ATSDR (Agency for Toxic Substances and Disease Registry), ADDENDUM FOR THORIUM Supplement to the 1990 Toxicological Profile for Thorium http:// www.atsdr.cdc.gov (2014).

  18. Larsson, A., Lehtinen, K.–J. & Haux, C. Biochemical and hematological effects of titanium dioxides industrial effluent on fish. Bull. Environ. Contam. Toxicol. 25, 427–435 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. Abd–Allah, G. A., Ibrahim, M. S., Bahnsawy, M. H. & Abdel–Baky, T. E. Toxic effects of some water pollutants (gallant and mercury) on blood parameters of catfish Clarias Lazera. J. Egypt. Ger. Soc. Zool. 6A, 201–209 (1991).

    Google Scholar 

  20. Brink, C., Dahlen, S. E., Drazen, J., Evanse J. F. & Haw D. W. International Union of Pharmacology: XXXVII. Nomenclature for leukotriene and lipoxin receptors. Pharmacol. Rev. 55, 195–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Oliveira, M. S., Duarte, I. M., Paiva, A. V., Matos, R. S. & Almidia C. E. The role of chemical interactions between thorium, cerium, and lanthanum in lymphocyte toxicity. Arch. Environ. Occup. Healt. 69, 40–5 (2014).

    Article  Google Scholar 

  22. Kyoizumi, S., Umeki, S., Akiyama, M., Hirai, Y. & Mori, T. Frequency of mutant T lymphocytes defective in the expression of the T–cell antigen receptor gene among radiation–exposed people. Mutat. Res. 265, 173–180 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, K., Chen, T., Lin, B., Cui, W. & Kan, B. Adsorption and recognition of protein molecular imprinted calcium alginate/polyacrylamide hydrogel film with good regeneration performance and high toughness. React. Funct. Polym. 87, 7–14 (2015).

    Article  CAS  Google Scholar 

  24. Raguvarana, R., Manujaa, A., Manujaa, B. K., Riyesha, T. & Singha, S. Sodium alginate and gum acacia hydrogels of zinc oxide nanoparticles reduce hemolytic and oxidative stress inflicted by zinc oxide nanoparticles on mammalian cells. Int. J. Biol. Macromo. 101, 967–972 (2017).

    Article  CAS  Google Scholar 

  25. Singh, S., Chopra, M., Dilbaghi, N., Manuja, B. K. & Kumar, S. Synthesis and evaluation of isometamidium–alginate nanoparticles on equine mononuclear and red blood cells. Int. J. Biol. Macromo. 92, 788–794 (2016).

    Article  CAS  Google Scholar 

  26. Kaul, A. & Muth, H. Thorotrast kinetics and radiation dose. Results from studies in Thorotrast patients and from animal experiments. Radiat. Environ. Biophys. 15, 241–259 (1978).

    Article  CAS  PubMed  Google Scholar 

  27. Parr, R. M., Lucas, H. F. Jr. & Griem, M. L. Metabolism of 232Th decay series radionuclides in man and other animals following intravascular administration of Thorotrast. ANL–7615. ANL Rep. 1, 97–115 (1968).

    Google Scholar 

  28. Howell, R. W. Patient exposures and consequent risks from nuclear medicine procedures. Health Phys. 100, 313–317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Farid, I. & Conibear, S. A. Hepatic function in previously exposed thorium refinery workers as compared to normal controls from the health and nutrition survey. Health Phys. 44, 221–230 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Evans, C. H. in Biochemistry of the lanthanides (Plenum Press, New York and London, 1990).

    Book  Google Scholar 

  31. Xu, S. et al. Pretreatment with Propylene Glycol Alginate Sodium Sulfate Ameliorated Concanavalin A–induced Liver Injury by Regulating the PI3K/Akt Pathway in Mice. Life Sci. 185, 103–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Shteyer, E. et al. Reduced liver cell death using a bandage of alginate scaffold: A novel approach for liver reconstruction after extended partial hepatectomy. Acta Biomater. 10, 3209–3216 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Nakazono, S. et al. Anti–obesity effects of enzymatically–digested alginate oligomer in mice model fed a high–fat–diet. Bioact. Carbohydr. Dietary Fibr. 7, 1–8 (2016).

    Article  CAS  Google Scholar 

  34. Sasmaz, A., Ozkan, S., Ferit, M. & Sasmaz, M. The hematological and biochemical changes in rats exposed to britholite mineral. Appl. Radiat. Isot. 131, 185–188 (2017).

    Article  CAS  Google Scholar 

  35. Lucas, N., Legrand, R., Breton, J., DE’ Chelotte, P. & Edwards–le, F. Chronic delivery of a–melanocyte–stimulating hormone in rat hypothalamus using albumin–alginate microparticles: effects on food intake and body weight. J. Neurosci. 290, 445–453 (2015).

    Article  CAS  Google Scholar 

  36. Kimura, Y., Watanabe, Y. & Okuda, H. Effects of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats. J. Ethnopharmacol. 54, 47–54 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Peerce, B. E. & Wright, E. M. Sodium–induced conformational changes in the glucose transporter of intestinal brush borders. J. Biol. Chem. 259, 14105–14112 (1984).

    CAS  PubMed  Google Scholar 

  38. Downs, W. L., Scott, K. J., Maynard, E. A. & Hodge, H. C. in Studies on the toxicity of thorium nitrate (University of Rochester, New York, 1959).

    Google Scholar 

  39. Del Rio, D. et al. Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 18, 1818–1892 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuzkaya, N., Weissmann, N., Harrison, D. G. & Dikalov, S. Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: Implications for uncoupling endothelial nitric oxide synthase. Biochem. Pharmacol. 70, 343–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Mclinton, L. T. & Schubert, J. The toxicity of some zirconium and thorium salt in rate. J. Pharmacol. Exp. Ther. 94, 1–6 (1948).

    Google Scholar 

  42. Food Administration Organizationn. Committee for Inland Fisheries of Africa. Report of the third session of the working party on pollution and Fisheries, http:// www.fao.org/3/T0666E00.htm (1992).

    Google Scholar 

  43. Marczenko, Z. in Spectrophotometric determination of elements (Ellis Harwood Ltd, England, 1986).

    Google Scholar 

  44. Britton, C. J. in Disorders of blood. 9th edn (J and A. Churchill, Ltd., London, 1963).

    Google Scholar 

  45. Penington, D. G., Rush, B. & Castaldi, P. A. in Clinical hematology in medical practice 4th edn (The English language book society and Black well scientific publication, London, 1999).

    Google Scholar 

  46. Foster, S. A., Swartzentruber, M. & Roberts, P. Reference interval studies of the Rate–Blanked creatinine/ Jaffe Method on BM/Hitachi system in six U. S. Laboratories. Clin. Chem. Abstract No. 361(1994).

    Google Scholar 

  47. Glicker, M. R., Ryder, K. W. & Jackson, S. A. Graphical Comparisons of interferences in Clinical Chemistry Instrumentation. Clin. Chem. 32, 470–474 (1986).

    Google Scholar 

  48. Bergmeyer, H. U., Horder, M. & Rej, R. Approved recommendation on IFCC method for the measurement of catalytic concentration of enzymes. Part 2. IFCC Method for aspartate amino transferase. J. Clin Chem. Clin. Biochem. 24, 497–508 (1986).

    CAS  PubMed  Google Scholar 

  49. Grant, G. H., Silverman, L. M. & Christenson, R. H. in Fundamentals of Clinical Chemistry 3rd edn. (eds Tietz N. W.) 328–330 (Philadelphia, Pa: WB Saunders, 1987).

  50. Shephard, M. D. S. & Whiting, M. J. Falsely low estimation of triglycerides in lipemic plasma by the enzymatic triglyceride method with modified Trinder’s Chromogen. Clin. Chem. 36, 325–329 (1990).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. Rezk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezk, M.M., Mohamed, A.A. & Ammar, A.A. Thorium Harmful Impacts on the Physiological Parameters of the Adult Male Albino Rats and Their Mitigation Using the Alginate. Toxicol. Environ. Health Sci. 10, 253–260 (2018). https://doi.org/10.1007/s13530-018-0373-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-018-0373-1

Keywords

Navigation