Skip to main content
Log in

Considerations of Human Health Risk Assessment in Chemical Accident: Suggestions from a Toxicogenomic Approach

  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2018

This article has been updated

Abstract

Evolution of industrial technologies is accelerating the usage of diverse chemicals in manufacturing processes and improving the risk of leakage by chemical accidents. Many institutes and organizations have pursued the prevention proper response against chemical accidents. Human health risk assessment aims to evaluate of the nature and probability of adverse health effects in humans who may be exposed to hazards in a contaminated environmental media. However, the risk assessment in chemical accidents has limitations caused by physical complications during the accident, difficulty in predicting the environmental fate of the target chemical, consideration of geometry in modeling program, and other factors. In this review, we suggest a toxicogenomic approach to overcome these aforementioned weak points in human health risk assessment in chemical accidents. The approach is explained using some toxic chemicals that indicate high accident rates. Even though this toxicogeomic database approach needs further validation studies as well as data quality assessment before being applied to actual risk assessments, our suggestions provide important clues for improving quality and accuracy of the existing human health risk assessment process, especially in cases of chemical accidents that need appropriate a response or prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 17 October 2018

    In the 2018 issue of Toxicology and Environmental Health Sciences (ToxEHS), an error occurred in the research article. Jun Hyuek Yang, Hyun Soo Kim, Bon Kon Koo, Cheol Min Lee, Jong-Hyeon Jung &amp; Young Rok Seo (2018) Considerations of Human Health Risk Assessment in Chemical Accident: Suggestions from a Toxicogenomic Approach <Emphasis Type="Italic">Toxicol. Environ. Health Sci.</Emphasis> <Emphasis Type="Bold">10</Emphasis>(2), 79-89

References

  1. World Health Organization, http://www.who.int/environmental_health_emergencies/publications/FINAL-PHM-Chemical-Incidents_web.pdf (2009).

  2. Cassee, F. R., Groten, J. P., van Bladeren, P. J. & Feron, V. J. Toxicological evaluation and risk assessment of chemical mixtures. Crit. Rev. Toxicol. 28, 73–101 (1998).

    Article  PubMed  CAS  Google Scholar 

  3. Purchase, I. F. H. & Randall, G. L. P. Principles of risk assessment. Pure Appl. Chem. 70, 1671–1683 (1998).

    Article  Google Scholar 

  4. Judson, R. S. et al. Estimating toxicity-related biological pathway altering doses for high-throughput chemical risk assessment. Chem. Res. Toxicol. 24, 451–462 (2011).

    Article  PubMed  CAS  Google Scholar 

  5. United States Environmental Protection Agency, https://www.epa.gov/risk/about-risk-assessment (2017).

  6. United States Environmental Protection Agency, https://www.epa.gov/risk/human-health-risk-assessment (2017).

  7. Maruthi, Y. A., Ramprasad, S. & Lakshmana Das, N. Trace Elemental Characterization of Chalk Dust and Their Associated Health Risk Assessment. Biol. Trace Elem. Res. 175, 466–474 (2017).

    Article  PubMed  CAS  Google Scholar 

  8. Andersen, M. E. Toxicokinetic modeling and its applications in chemical risk assessment. Toxicol. Lett. 138, 9–27 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. van der Woude, H., Alink, G. M. & Rietjens, I. M. The definition of hormesis and its implications for in vitro to in vivo extrapolation and risk assessment. Crit. Rev. Toxicol. 35, 603–607 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Abt, E., Rodricks, J. V., Levy, J. I., Zeise, L. & Burke, T. A. Science and decisions: advancing risk assessment. Risk Anal. 30, 1028–1036 (2010).

    Article  PubMed  Google Scholar 

  11. Thomas, R. S. & Michael D. W. Toxicogenomics in Predictive Carcinogenicity in Issues in toxicology, The Royal Society of Chemistry (2016).

    Book  Google Scholar 

  12. Lesko, L. J. & Woodcock, J. Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective. Nat. Rev. Drug Discov. 3, 763–769 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. Martinez-Ledesma, E., Verhaak, R. G. & Trevino, V. Identification of a multi-cancer gene expression biomarker for cancer clinical outcomes using a network-based algorithm. Sci. Rep. 5, 11966 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Yuryev, A., Kotelnikova, E. & Daraselia, N. Ariadne’s ChemEffect and Pathway Studio knowledge base. Expert Opin. Drug Discov. 4, 1307–1318 (2009).

    Article  PubMed  CAS  Google Scholar 

  15. Stastna, M. & Van Eyk, J. E. Secreted proteins as a fundamental source for biomarker discovery. Proteomics 12, 722–735 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Strimbu, K. & Tavel, J. A. What are biomarkers? Curr. Opin. HIV AIDS 5, 463–466 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tsuchiya, N. et al. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J. Gastroenterol. 21, 10573–10583 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Barton, M. K. Predictive biomarkers may help individualize treatment for patients with follicular lymphoma. CA Cancer J. Clin. 63, 293–294 (2013).

    Article  PubMed  Google Scholar 

  19. Nigam, N. C., Maheshwari, A. K. & Rao, N. P. Hazard Identification and Risk Assessment. IFFCO-Aonla trainng manual 1, 5–8 (2009).

    Google Scholar 

  20. Gelman, A., Bois, F. & Jiang, J. Physiological pharmacokinetic analysis using population modeling and informative prior distributions. J. Am. Stat. Assoc. 91, 1400–1412 (1996).

    Article  Google Scholar 

  21. Balls, M. & Fentem, J. H. Use of basal cytotoxicity and target organ toxicity tests in hazard identification and risk assessment. Altern. Lab. Anim. 20, 368–388 (1992).

    Google Scholar 

  22. van Leeuwen, C. J. & Vermeire, T. G. in Risk assessment of chemicals: an introduction (Springer Science & Business Media, Germany, 2007).

    Book  Google Scholar 

  23. National Research Council. in Scientific frontiers in developmental toxicology and risk assessment (National Academies Press, USA, 2000).

  24. United States Environmental Protection Agency, https://www.epa.gov/sites/production/files/2014-12/documents/rfd-final.pdf (2002).

  25. United States Environmental Protection Agency, https://www.epa.gov/sites/production/files/2013-09/documents/cancer_guidelines_final_3-25-05.pdf (2005).

  26. United States Environmental Protection Agency, https://www.epa.gov/sites/production/files/2014-11/documents/guidelines_exp_assessment.pdf (1992).

  27. Haddad, S., Beliveau, M., Tardif, R. & Krishnan, K. Estimating Toxicity-Related Biological Pathway Altering Doses for High-Throughput Chemical Risk Assessment. Toxicol. Sci. 63, 125–131 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. Brokamp, C., Jandarov, R., Rao, M. B., LeMasters, G. & Ryan, P. Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmos. Environ. 151, 1–11 (2017).

    Article  CAS  Google Scholar 

  29. Garg, A., Moore, J. S. & Kapellusch, J. M. The Revised Strain Index: an improved upper extremity exposure assessment model. Ergonomics 60, 912–922 (2017).

    Article  PubMed  Google Scholar 

  30. Organization for Economic Co-operation and Development, https://www.oecd.org/chemicalsafety/chemical-accidents/Guiding-principles-chemical-accident.pdf (2003).

  31. SEVESo III, Directive. Directive 2012/18/EU of the European Parliament and of the Council of 4 July 2012 on the control of major-accident hazards involving dangerous substances, amending and subsequently repealing Council Directive 96/82/EC Text with EEA relevance, https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=celex:32012L0018 (2012).

  32. Li, J., Zhang, B., Tang, S. & Tong, R. Application of FLUENT in consequence simulation of typical chlorine leakage accidents of chemical factory. Toxicol. Ind. Health 32, 1–17 (2014).

    Google Scholar 

  33. Yilang, H., Yan, X. & He, C. Analysis of Liquid Ammonia Leakage Accidents based on Safety System Engineering Theory. IJBSS 5, 220–226 (2014).

    Google Scholar 

  34. Jang, N. et al. Development of chemical accident database: Considerations, accident trend analysis and suggestions. Korean J. Chem. Eng. 29, 36–41 (2012).

    Article  CAS  Google Scholar 

  35. Bourdeau, P. & Green, G. in Methods for Assessing and Reducing Injury from Chemical Accidents (John Wiley & Sons Ltd, USA, 1989).

    Google Scholar 

  36. Jianwen, Z., Da, L. & Wenxing, F. Analysis of chemical disasters caused by release of hydrogen sulfide-bearing natural gas. Procedia Eng. 26, 1878–1890 (2011).

    Article  CAS  Google Scholar 

  37. Liu, D., Wei, J., Kong, Z., Xu, Z. & Tian, X. Simulation of diffusion trend of unexpected gas leak accident based on Google Earth. Procedia Eng. 45, 373–377 (2012).

    Article  CAS  Google Scholar 

  38. Arnot, J. A., Mackay, D., Webster, E. & Southwood, J. M. Screening level risk assessment model for chemical fate and effects in the environment. Environ. Sci. Technol. 40, 2316–2323 (2006).

    Article  PubMed  CAS  Google Scholar 

  39. Vermeire, T. G. et al. European European Union System for the Evaluation of Substances (EUSES): the second version. Chemosphere 59, 473–485 (2005).

    Article  PubMed  CAS  Google Scholar 

  40. Webster, E., Mackay, D., Di Guardo, A., Kane, D. & Woodfine, D. Regional differences in chemical fate model outcome. Chemosphere 55, 1361–1376 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. McKone, T. E. CalTOX, a multimedia total exposure model for hazardous-waste sites; Part 1, Executive summary (Lawrence Livermore National Lab., CA, USA, 1993).

    Book  Google Scholar 

  42. Taylor, G. E. et al. Microbial ecology, toxicology and chemical fate of methyl isothiocyanate in riparian soils from the upper Sacramento river. Environ. Toxicol. Chem. 15, 1694–1701 (1996).

    Article  CAS  Google Scholar 

  43. Zhang, W., Lin, X. & Su, X. Transport and fate modeling of nitrobenzene in groundwater after the Songhua River pollution accident. J. Environ. Manage. 91, 2378–2384 (2010).

    Article  PubMed  CAS  Google Scholar 

  44. Wullenweber, A. et al. Resources for global risk assessment: the international toxicity estimates for risk (ITER) and risk information exchange (RiskIE) databases. Toxicol. Appl. Pharmacol. 233, 45–53 (2008).

    Article  PubMed  CAS  Google Scholar 

  45. Agency for Toxic Substances & Disease Registry, https://www.atsdr.cdc.gov/mrls/mrllist.asp#39tag (2017).

  46. Pognan, F. Genomics, proteomics and metabonomics in toxicology: hopefully not ‘fashionomics’. Pharmacogenomics 5, 879–893 (2004).

    Article  PubMed  CAS  Google Scholar 

  47. Harries, H. M., Fletcher, S. T., Duggan, C. M. & Baker, V. A. The use of genomics technology to investigate gene expression changes in cultured human liver cells. Toxicol. In Vitro 15, 399–405 (2001).

    Article  PubMed  CAS  Google Scholar 

  48. Crosby, L. M. et al. Morphologic analysis correlates with gene expression changes in cultured F344 rat mesothelial cells. Toxicol. Appl. Pharmacol. 169, (2000).

    Google Scholar 

  49. Boverhof, D. R. & Zacharewski, T. R. Toxicogenomics in risk assessment: applications and needs. Toxicol. Sci. 89, 352–360 (2006).

    Article  PubMed  Google Scholar 

  50. Davis, A. P. et al. The Comparative Toxicogenomics Database: update 2017. Nucleic Acids Res. 45, D972–D978 (2017).

    Article  PubMed  CAS  Google Scholar 

  51. Bishop, W. E., Clarke, D. P. & Travis, C. C. The genomic revolution: what does it mean for risk assessment? Risk Anal. 21, 983–987 (2001).

    Article  PubMed  CAS  Google Scholar 

  52. Petricoin, E. F. et al. Medical applications of microarray technologies: a regulatory science perspective. Nat. Genet. 32(Suppl), 474–479 (2002).

    Article  PubMed  CAS  Google Scholar 

  53. Pennie, W., Pettit, S. D. & Lord, P. G. Toxicogenomics in risk assessment: an overview of an HESI collaborative research program. Environ. Health Perspect. 112, 417–419 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Vachon, J., Campagna, C., Rodriguez, M. J., Sirard, M. A. & Levallois, P. Barriers to the use of toxicogenomics data in human health risk assessment: A survey of Canadian risk assessors. Regul. Toxicol. Pharmacol. 85, 119–123 (2017).

    Article  PubMed  CAS  Google Scholar 

  55. McHale, C. M., Zhang, L., Hubbard, A. E. & Smith, M. T. Toxicogenomic profiling of chemically exposed humans in risk assessment. Mutat. Res. 705, 172–183 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Waters, M. et al. CEBS-Chemical Effects in Biological Systems: a public data repository integrating study design and toxicity data with microarray and proteomics data. Nucleic Acids Res. 36, 892–900 (2008).

    Article  CAS  Google Scholar 

  57. Denny, J. C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 26, 1205–1210 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Ryu, Y. H. et al. Cerebral perfusion impairment in a patient with toluene abuse. J. Nucl. Med. 39, 632–633 (1998).

    PubMed  CAS  Google Scholar 

  59. Baydas, G., Ozveren, F., Tuzcu, M. & Yasar, A. Effects of thinner exposure on the expression pattern of neural cell adhesion molecules, level of lipid peroxidation in the brain and cognitive function in rats. Eur. J. Pharmacol. 512, 181–187 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. Ikeuchi, Y. & Hirai, H. Toluene inhibits synaptic transmission without causing gross morphological disturbances. Brain Res. 664, 266–270 (1994).

    Article  PubMed  CAS  Google Scholar 

  61. El-Nabi Kamel, M. A. & Shehata, M. Effect of toluene exposure on the antioxidant status and apoptotic pathway in organs of the rat. Br. J. Biomed. Sci. 65, 75–79 (2008).

    Article  PubMed  CAS  Google Scholar 

  62. Coskun, O., Oter, S., Korkmaz, A., Armutcu, F. & Kanter, M. The oxidative and morphological effects of high concentration chronic toluene exposure on rat sciatic nerves. Neurochem. Res. 30, 33–38 (2005).

    Article  PubMed  CAS  Google Scholar 

  63. Shelton, D. L. & Reichardt, L. F., Studies on the expression of the beta nerve growth factor (NGF) gene in the central nervous system: level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons. PNAS 83, 2714–2718 (1986).

    Article  PubMed  CAS  Google Scholar 

  64. Meffert, M. K., Chang, J. M., Wiltgen, B. J., Fanselow, M. S. & Baltimore, D. NF-kappa B functions in synaptic signaling and behavior. Nat. Neurosci. 6, 1072–1078 (2003).

    Article  PubMed  CAS  Google Scholar 

  65. Zenz, R. et al. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res. Ther. 10, 201 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Camps, M., Nichols, A. & Arkinstall, S. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 14, 6–16 (2000).

    Article  PubMed  CAS  Google Scholar 

  67. Svobodova, A., Psotova, J. & Walterova, D. Natural phenolics in the prevention of UV-induced skin damage. A review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 147, 137–145 (2003).

    Article  PubMed  CAS  Google Scholar 

  68. Cameochemicals. https://cameochemicals.noaa.gov/chemical/17382 (2017).

  69. O’Donoghue, J. L. in Neurotoxicity of industrial and commercial chemicals (CRC Press, USA, 1985).

    Google Scholar 

  70. Fang, H. H. & Chan, O. C. Toxicity of phenol towards anaerobic biogranules. Water Res. 31, 2229–2242 (1997).

    Article  CAS  Google Scholar 

  71. Lin, T. M., Lee, S. S., Lai, C. S. & Lin, S. D. Phenol burn. Burns 32, 517–521 (2006).

    Article  PubMed  Google Scholar 

  72. Dosemeci, M., Blair, A., Stewart, P. A., Chandler, J. & Trush, M. A. Mortality among industrial workers exposed to phenol. Epidemiology 2, 188–193 (1991).

    Article  PubMed  CAS  Google Scholar 

  73. Nemetz, A. et al. IL1B gene polymorphisms influence the course and severity of inflammatory bowel disease. Immunogenetics 49, 527–531 (1999).

    Article  PubMed  CAS  Google Scholar 

  74. Lyons, M. J., Yoshimura, T. & McMurray, D. N. Interleukin (IL)-8 (CXCL8) induces cytokine expression and superoxide formation by guinea pig neutrophils infected with Mycobacterium tuberculosis. Tuberculosis (Edinb) 84, 283–292 (2004).

    Article  Google Scholar 

  75. Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Holst, F. et al. Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. Nat. Genet. 39, 655–660 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Rok Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J.H., Kim, H.S., Koo, B.K. et al. Considerations of Human Health Risk Assessment in Chemical Accident: Suggestions from a Toxicogenomic Approach. Toxicol. Environ. Health Sci. 10, 79–89 (2018). https://doi.org/10.1007/s13530-018-0350-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-018-0350-8

Keywords

Navigation