Skip to main content

Pathogenic Mechanisms of Heavy Metal Induced-Alzheimer’s Disease

Abstract

Alzheimer’s disease is an increasing neurodegenerative disease in the aging population. The disease is associated with toxic chemicals of industrial origin. Industrial processes can result in airborne contamination such as fine dust, and water and soil contamination. In the processes, heavy metals are one of the major environmental pollutants. Also, heavy metals are widely used for many appliances. In particular, heavy metals are seriously toxic to the neural system. In several studies, researchers have emphasized the toxicity of heavy metals such as lead, mercury, and cadmium, as a cause of neurofibrillary tangles, aggregation amyloid beta peptides (AβPs) as well as neuronal cell loss. Based on neurotoxic studies showing that heavy metals induce Alzheimer’s disease, this paper discusses molecular mechanisms by which exposure to heavy metals contributes to the pathogenesis of Alzheimer’s disease. Also, we indicate pathway for heavy metal related Alzheimer’s through integrated analysis based on molecular networks. We suggest that the study of signaling networks contributes to our ability to select significant factors for curing heavy metal induced Alzheimer’s disease.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Srianujata, S. Lead-the toxic metal to stay with human. J. Toxicol. Sci. 23, 237–240 (1998).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Gochfeld, M. Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol. Environ. Saf. 56, 174–179 (2003).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Godt, J. et al. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 1, doi:10.1186/1745-6673-1-22 (2006).

  4. 4.

    Goyer, R. A. Lead toxicity: from overt to subclinical to subtle health effects. Environ. Health Perspect. 86, 177–181 (1990).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Flora, G., Gupta, D. & Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 5, 47–58 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Pelletier, L. et al. Autoreactive T cells in mercury-induced autoimmunity. Ability to induce the autoimmune disease. J. Immunol. 140, 750–754 (1988).

    CAS  PubMed  Google Scholar 

  7. 7.

    Torres, A. M. et al. Deletion of Multispecific Organic Anion Transporter Oat1/Slc22a6 Protects against Mercury-induced Kidney Injury. J. Biol. Chem. 286, 26391–26395 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Flick, D. F., Kraybill, H. F. & Dimitroff, J. M. Toxic effects of cadmium: A review. Environ. Res. 4, 71–85 (1971).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Huang, J., Tanii, H., Kato, K. & Hashimoto, K. Neuron and glial cell marker proteins as indicators of heavy metal-induced neurotoxicity in neuroblastoma and glioma cell lines. Arch. Toxicol. 67, 491–496 (1993).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Lee, Y. W., Ha, M. S. & Kim, Y. K. Role of Reactive Oxygen Species and Glutathione in Inorganic Mercury-Induced Injury in Human Glioma Cells. Neurochem. Res. 26, 1187–1193 (2001).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Olivieri, G. et al. The effects of β-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and β-amyloid secretion. Neuroscience 113, 849–855 (2002).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Latinwo, L. M. et al. Comparative studies of in vivo genotoxic effects of cadmium chloride in rat brain, kidney and liver cells. Cell Mol. Biol. (Noisy-le-grand) 43, 203–210 (1997).

    CAS  Google Scholar 

  13. 13.

    Xu, F. et al. Mercury-induced toxicity of rat cortical neurons is mediated through N-methyl-D-Aspartate receptors. Mol. Brain. 5, doi: 10.1186/1756-6606-5-30 (2012).

  14. 14.

    Bokara, K. K. et al. Lead-induced increase in antioxidant enzymes and lipid peroxidation products in developing rat brain. BioMetals 21, 9–16 (2008).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Pieper, I. et al. Mechanisms of Hg species induced toxicity in cultured human astrocytes: genotoxicity and DNA-damage response. Metallomics 6, 662–671 (2014).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Rodríguez, V. M., Jiménez-Capdeville, M. E. & Giordano, M. The effects of arsenic exposure on the nervous system. Toxicol. Lett. 145, 1–18 (2003).

    Article  PubMed  Google Scholar 

  17. 17.

    Garza, A., Vega, R. & Soto, E. Cellular mechanisms of lead neurotoxicity. Med. Sci. Monit. 12, RA57-65 (2006).

  18. 18.

    Pourabdian, S., Eizadi-Mood, N., Golshiri, P. & Amini, F. The Relationship between Blood Lead Level and Neuro-psychological and Hematological Findings in Lead-Exposed Workers of Battery Industry. Iran. J. Toxicol. 5, 521–526 (2011).

    Google Scholar 

  19. 19.

    Bakulski, K. M. et al. Alzheimer’s Disease and Environmental Exposure to Lead: The Epidemiologic Evidence and Potential Role of Epigenetics. Curr. Alzheimer Res. 9, 563–573 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sharma, S. V. et al. Lead (Pb) Toxicity Trigger Schizophrenia in Battery Workers of North Region of India. JNND 2, doi:10.15744/2454-4981.2.302 (2015).

  21. 21.

    Matte, T. D. et al. Lead Poisoning among Household Members Exposed to Lead-Acid Battery Repair Shops in Kingston, Jamaica. Int. J. Epidemiol. 18, 874–881 (1989).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Hock, C. et al. Increased blood mercury levels in patients with Alzheimer’s disease. J. Neural. Transm (Vienna) 105, 59–68 (1998).

    CAS  Article  Google Scholar 

  23. 23.

    Ehmann, W. D. et al. Brain trace elements in Alzheimer’s disease. Neurotoxicology 7, 195–206 (1986).

    CAS  PubMed  Google Scholar 

  24. 24.

    Thompson, C. M. et al. Regional brain trace-element studies in Alzheimer’s disease. Neurotoxicology 9, 1–7 (1988).

    CAS  PubMed  Google Scholar 

  25. 25.

    Mano, Y., Takayanagi, T., Ishitani, A. & Hirota, T. Mercury in hair of patients with ALS. Rinsho. Shinkeigaku 29, 844–848 (1989).

    CAS  PubMed  Google Scholar 

  26. 26.

    Zahir, F., Rizwi, S. J., Haq, S. K. & Khan, R. H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 20, 351–360 (2005).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Mutter, J. et al. Does Inorganic Mercury Play a Role in Alzheimer’s Disease? A Systematic Review and an Integrated Molecular Mechanism. J. Alzheimers Dis. 22, 357–374 (2010).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Haut, M. W. et al. Neurobehavioral Effects of Acute Exposure to Inorganic Mercury Vapor. Appl. Neuropsychol. 6, 193–200 (1999).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Panayi, A. E. et al. Determination of cadmium and zinc in Alzheimer’s brain tissue using Inductively Coupled Plasma Mass Spectrometry. J. Neurol. Sci. 195, 1–10 (2002).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Lui, E. et al. Metals and the Liver in Alzheimer’s Disease An Investigation of Hepatic Zinc, Copper, Cadmium, and Metallothionein. J. Am. Geriatr. Soc. 38, 633–639 (1990).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Basun, H., Forssell, L. G., Wetterberg, L. & Winblad, B. Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J. Neural. Transm. Park. Dis. Dement. Sect. 3, 231–258 (1991).

    CAS  PubMed  Google Scholar 

  32. 32.

    Notarachille, G., Arnesano, F., Calò, V. & Meleleo, D. Heavy metals toxicity: effect of cadmium ions on amyloid beta protein 1-42. Possible implications for Alzheimer’s disease. BioMetals 27, 371–388 (2014).

    CAS  PubMed  Google Scholar 

  33. 33.

    Hart, R. P., Rose, C. S. & Hamer, R. M. Neuropsycological effect of occupational exposure to cadmium. J. Clin. Exp. Neuropsychol. 11, 933–943 (1989).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Li, X. et al. The effect of cadmium on Aβ levels in APP/PS1 transgenic mice. Exp. Ther. Med. 4, 125–130 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mao, P. & Reddy, P. H. Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s disease: Implications for early intervention and therapeutics. Biochim. Biophys. Acta. 1812, 1359–1370 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Chen, C. et al. Increased oxidative DNA damage, as assessed by urinary 8-hydroxy-2'-deoxyguanosine concentrations, and serum redox status in persons exposed to mercury. Clin. Chem. 51, 759–767 (2005).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Hamilton, M. L. et al. A reliable assessment of 8-oxo-2-deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA. Nucleic. Acids. Res. 29, 2117–2126 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sedelnikova, O. A. et al. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat. Cell Biol. 6, 168–170 (2004).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    von Figura, G., Hartmann, D., Song, Z. & Rudolph, K. L. Role of telomere dysfunction in aging and its detection by biomarkers. J. Mol. Med. 87, 1165–1171 (2009).

    Article  Google Scholar 

  40. 40.

    Bolin, C. M. et al. Exposure to lead (Pb) and the developmental origin of oxidative DNA damage in the aging brain. FASEB J. 20, 788–790 (2006).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Bains, J. S. & Shaw, C. A. Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain. Res. Brain. Res. Rev. 25, 335–358 (1997).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Selkoe, D. J. Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer’s disease. Annu. Rev. Cell. Biol. 10, 373–403 (1994).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Wu, J. et al. Alzheimer’s Disease (AD)-Like Pathology in Aged Monkeys after Infantile Exposure to Environmental Metal Lead (Pb): Evidence for a Developmental Origin and Environmental Link for AD. J. Neurosci. 28, 3–9 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Basha, M. R. et al. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J. Neurosci. 25, 823–829 (2005).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Bihaqi, S. W., Huang, H., Wu, J. & Zawia, N. H. Infant Exposure to Lead (Pb) and Epigenetic Modifications in the Aging Primate Brain: Implications for Alzheimer’s Disease. J. Alzheimers. Dis. 27, 819–833 (2011).

    CAS  PubMed  Google Scholar 

  46. 46.

    Davey, F. D. & Breen, K. C. The interactions between chronic low-level lead and the amyloid β-precursor protein. Amyloid 5, 90–98 (1998).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Mutter, J. et al. Alzheimer disease: mercury as pathogenetic factor and apolipoprotein E as a moderator. Neuro. Endocrinol. Lett. 25, 331–339 (2004).

    CAS  PubMed  Google Scholar 

  48. 48.

    Cedrola, S. et al. Inorganic mercury changes the fate of murine CNS stem cells. FASEB J. 17, 869–871 (2003).

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Kosik, K. S., Joachim, C. L. & Selkoe, D. J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA 83, 4044–4048 (1986).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Olivieri, G. et al. Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. J. Neurochem. 74, 231–236 (2000).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Busciglio, J., Lorenzo, A., Yeh, J. & Yankner, B. A. beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14, 879–888 (1995).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Mao, P. & Reddy, P. H. Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s disease: implications for early intervention and therapeutics. Biochim. Biophys. Acta. 1812, 1359–1370 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Goedert, M. et al. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3, 519–26 (1989).

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Zheng, W. H. et al. Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience 115, 201–211 (2002).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Huang, H. C. & Jiang, Z. F. Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J. Alzheimers Dis. 16, 15–27 (2009).

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Ittner, L. M. et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142, 387–397 (2010).

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Monnet-Tschudi, F. et al. Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev. Environ. Health. 21, 105–117 (2006).

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Charleston, J. S. et al. Changes in the number of astrocytes and microglia in the thalamus of the monkey Macaca fascicular is following long-term subclinical methylmercury exposure. Neurotoxicology 17, 127–138 (1996).

    CAS  PubMed  Google Scholar 

  59. 59.

    Smedman, M. et al. Effects of cadmium, copper, and zinc and beta APP processing and turnover in COS-7 and PC12 cells. Relationship to Alzheimer disease pathology. Mol. Chem. Neuropathol. 31, 13–28 (1997).

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Eskes, C., Honegger, P., Juillerat-Jeanneret, L. & MonnetTschudi, F. Microglial reaction induced by noncytotoxic methylmercury treatment leads to neuroprotection via interactions with astrocytes and IL-6 release. Glia 37, 43–52 (2002).

    Article  PubMed  Google Scholar 

  61. 61.

    Kawarabyashi, T. et al. Expression of APP in the early stage of brain damage. Brain. Res. 563, 334–338 (1991).

    Article  Google Scholar 

  62. 62.

    Götz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293, 1491–1495 (2001).

    Article  PubMed  Google Scholar 

  63. 63.

    Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Oddo, S. et al. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol. Aging 24, 1063–1070 (2003).

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Syme, C. D. & Viles, J. H. Solution 1H NMR investigation of Zn2+ and Cd2+ binding to amyloid-beta peptide (Abeta) of Alzheimer’s disease. Biochim. Biophys. Acta 1764, 246–256 (2006).

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Yano, K. et al. Aggregations of amyloid beta-proteins in the presence of metal ions. Toxicol. Lett. 144, doi: org/10.1016/S0378-4274(03)90499-1 (2003).

  67. 67.

    Jiang, L. F. et al. Impacts of Cd (II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim. Biophys. Acta 1774, 1414–1421 (2007).

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Butterfield, D. A. Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic. Res. 36, 1307–1313 (2002).

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Drake, J., Link, C. D. & Butterfield, D. A. Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid beta-peptide (1-42) in a transgenic Caenorhabditis elegans model. Neurobiol. Aging 24, 415–420 (2003).

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Selkoe, D. J. Clearing the brain’s amyloid cobwebs. Neuron 25, 177–180 (2001).

    Article  Google Scholar 

  71. 71.

    Del Pino, J. et al. Cadmium-induced cell death of basal forebrain cholinergic neurons mediated by muscarinic M1 receptor blockade, increase in GSK-3β enzyme, β-amyloid and tau protein levels. Arch. Toxicol. 90, 1081–1092 (2016).

    Article  PubMed  Google Scholar 

  72. 72.

    Takashima, A. GSK-3 is essential in the pathogenesis of Alzheimer’s disease. J. Alzheimers Dis. 9, 309–317 (2006).

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Monsonego, A. et al. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease. J. Clin. Invest. 112, 415–422 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Nakanishi, A. et al. BRCA1 and p53 tumor suppressor molecules in Alzheimer’s disease. Int. J. Mol. Sci. 16, 2879–2892 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Liu, H. et al. SB216763, a selective small molecule inhibitor of glycogen synthase kinase-3, improves bleomycin-induced pulmonary fibrosis via activating autophagy. Acta Pharmacol. Sin. 3, 226–233 (2013).

    Article  Google Scholar 

  76. 76.

    Ling, Y. H., Tornos, C. & Perez-Soler, R. Phosphorylation of Bcl-2 is a marker of M phase events and not a determinant of apoptosis. J. Biol. Chem. 273, 18984–18991 (1998).

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Ju, T. C., Chen, S. D., Liu, C. C. & Yang, D. I. Protective effects of S-nitrosoglutathione against amyloid β-peptide neurotoxicity. Free. Radic. Biol. Med. 38, 938–949 (2005).

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Lin, C. F. et al. GSK-3beta acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 in ceramide-induced mitochondrial apoptosis. J. Cell. Sci. 120, 2935–2943 (2007).

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Lee, H. E. et al. Inhibition of specificity protein 1 by dibenzylideneacetone, a curcumin analogue, induces apoptosis in mucoepidermoid carcinomas and tumor xenografts through Bim and truncated Bid. Oral. Oncol. 50, 189–195 (2013).

    Article  PubMed  Google Scholar 

  80. 80.

    Feng, J., Meng, C. & Xing, D. Aβ induces PUMA activation: a new mechanism for Aβ-mediated neuronal apoptosis. Neurobiol. Aging 36, 789–800 (2014).

    Article  PubMed  Google Scholar 

  81. 81.

    Li, C. et al. The β isoform of GSK3 mediates podocyte autonomous injury in proteinuric glomerulopathy. J. Pathol. 239, 23–35 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Stephen, T. L. et al. Effect of B7-2 and CD40 signals from activated antigen-presenting cells on the ability of zwitterionic polysaccharides to induce T-Cell stimulation. Infect. Immun. 73, 2184–2189 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    McQuillan, K., Lynch, M. A. & Mills, K. H. G. Activation of mixed glia by Aβ-specific Th1 and Th17 cells and its regulation by Th2 cells. Brain Behav. Immun. 24, 598–607 (2010).

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Wu, K. et al. Cell fate determination factor DACH1 inhibits c-Jun-induced contact-independent growth. Mol. Biol. Cell. 18, 755–767 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Saini, M. K. & Sanyal, S. N. PTEN regulates apoptotic cell death through PI3-K/Akt/GSK3β signaling pathway in DMH induced early colon carcinogenesis in rat. Exp. Mol. Pathol. 93, 135–146 (2012).

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Kam, T.-I. et al. FcγRIIb mediates amyloid-β neurotoxicity and memory impairment in Alzheimer’s disease. J. Clin. Invest. 123, 2791–2802 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Ekström, L. et al. Basal expression of the human MAPEG members microsomal glutathione transferase 1 and prostaglandin E synthase genes is mediated by Sp1 and Sp3. Biochim. Biophys. Acta 1627, 79–84. (2003).

    Article  PubMed  Google Scholar 

  88. 88.

    Satoh, K. et al. Expression of prostaglandin E synthase mRNA is induced in beta-amyloid treated rat astrocytes. Neurosci. Lett. 283, 221–223 (2000).

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    de Oliveira, A. C. et al. Pharmacological inhibition of Akt and downstream pathways modulates the expression of COX-2 and mPGES-1 in activated microglia. J. Neuroinflammation 9, doi: 10.1186/1742-2094-9-2 (2012).

  90. 90.

    Fiala, M. et al. Innate immunity and transcription of MGAT-III and Toll-like receptors in Alzheimer’s disease patients are improved by bisdemethoxycurcumin. Proc. Natl. Acad. Sci. USA. 104, 12849–12854 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Wasiluk, K. R., McCulloch, K. A., Banton, K. L. & Dunn, D. L. Sp1 elements regulate transcriptional activity within the murine Toll-like receptor 4 promoter. Surg. Infect. (Larchmt) 7, 489–499 (2006).

    Article  Google Scholar 

  92. 92.

    Bai, X. T., Baydoun, H. H. & Nicot, C. HTLV-I p30: A versatile protein modulating virus replication and pathogenesis. Mol. Aspects Med. 31, 344–349 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Stengel, C. et al. In vivo and in vitro properties of STX2484: a novel non-steroidal anti-cancer compound active in taxane-resistant breast cancer. Br. J. Cancer. 111, 300–308 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Jans, D. A., Thomas, R. J. & Gillespie, M. T. Parathyroid Hormone-Related Protein (PTHrP): A Nucleocytoplasmic Shuttling Protein with Distinct Paracrine and Intracrine Roles. Vitam. Horm. 66, 345–384 (2003).

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Kaminsky, Y. G., Marlatt, M. W., Smith, M. A. & Kosenko, E. A. Subcellular and metabolic examination of amyloid-β peptides in Alzheimer disease pathogenesis: Evidence for Aβ25-35. Exp. Neurol. 221, 26–37 (2010).

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Wang, W., Gu, L., Verkhratsky, A. & Peng, L. Ammonium Increases TRPC1 Expression Via Cav-1/PTEN/AKT/GSK3β Pathway. Neurochem. Res. 42, 762–776 (2016).

    Article  PubMed  Google Scholar 

  97. 97.

    Linde, C. I., Baryshnikov, S. G., Mazzocco-Spezzia, A. & Golovina, V. A. Dysregulation of Ca2+ signaling in astrocytes from mice lacking amyloid precursor protein. Am. J. Physiol. Cell Physiol. 300, C1502–1512 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    de Souza, L. B. & Ambudkar, I. S. Trafficking mechanisms and regulation of TRPC channels. Cell Calcium 56, 43–50 (2014).

    Article  PubMed  Google Scholar 

  99. 99.

    Corsini, N. S. et al. The Death Receptor CD95 Activates Adult Neural Stem Cells for Working Memory Formation and Brain Repair. Cell Stem Cell 5, 178–190 (2009).

    CAS  Article  PubMed  Google Scholar 

  100. 100.

    Chen, Y. & Dong, C. Abeta40 promotes neuronal cell fate in neural progenitor cells. Cell Death Differ. 16, 386–394 (2009).

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Edelman, M. J. & Shvartsbeyn, M. Epothilones in Development for Non-Small-Cell Lung Cancer: Novel Anti-Tubulin Agents with the Potential to Overcome Taxane Resistance. Clin. Lung Cancer 13, 171–180 (2012).

    CAS  Article  PubMed  Google Scholar 

  102. 102.

    Gupta, C., Kaur, J. & Tikoo, K. Regulation of MDAMB-231 cell proliferation by GSK-3β involves epigenetic modifications under high glucose conditions. Exp. Cell Res. 324, 75–83 (2014).

    CAS  Article  PubMed  Google Scholar 

  103. 103.

    Ghosh, F., Arnér, K. & Engelsberg, K. Isolation of photoreceptors in the cultured full-thickness fetal rat retina. Invest. Ophthalmol. Vis. Sci. 50, 826–835 (2009).

    Article  PubMed  Google Scholar 

  104. 104.

    Levin, E. C. et al. Neuronal expression of vimentin in the Alzheimer’s disease brain may be part of a generalized dendritic damage-response mechanism. Brain Res. 1298, 194–207 (2009).

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Young Rok Seo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, H.J., Park, M.K. & Seo, Y.R. Pathogenic Mechanisms of Heavy Metal Induced-Alzheimer’s Disease. Toxicol. Environ. Health Sci. 10, 1–10 (2018). https://doi.org/10.1007/s13530-018-0340-x

Download citation

Keywords

  • Alzheimer’s disease
  • Heavy metal
  • Lead
  • Mercury
  • Cadmium
  • Molecular mechanisms
  • Pathogenesis
  • Integrated analysis
  • Signaling networks