Skip to main content
Log in

Umbelliferone stimulated melanogenesis and increased glutathione level in B16F10 cells

  • Original article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Umbelliferone (7-hydroxycoumarin) treatment caused an increase in melanin content in B16F10 melanoma cells in a dose-dependent manner, without causing toxicity. The increase in melanin content was correlated with increases in the activity of tyrosinase, the rate-limiting enzyme in melanin synthesis, and the expressions of melanogenic proteins, including tyrosinase, tyrosinase-related protein 1, and microphthalmia-associated transcription factor, the master transcriptional regulator for melanogenesis. Unlike α-melanocyte-stimulating hormone, umbelliferone did not cause melanogenesis-associated oxidation and depletion of glutathione. Conversely, umbelliferone treatment resulted in a significant and dose-dependent increase in glutathione. Umbelliferone caused activation of JNK, p38 MAPK, and GSK3β in a dose- dependent manner, suggesting possible involvement of those protein kinases in umbelliferone-induced stimulations of melanogenesis and antioxidant system. Our results suggest that umbelliferone stimulates both melanogenesis and antioxidant defense, providing more effective protection against UV-induced photodamage. They also imply possible applications of umbelliferone in self-tanning and treatment of skin disorders related with melanin deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamaguchi, Y., Brenner, M. & Hearing, V. J. The regulation of skin pigmentation. J. Biol. Chem. 282, 27557–27561 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Brenner, M. & Hearing, V. J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 84, 539–549 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hearing, V. J. Determination of melanin synthetic pathways. J. Invest. Dermatol. 131, E8–E11 (2011).

    Article  PubMed  Google Scholar 

  4. Videira, I. F., Moura, D. F. & Magina, S. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 88, 76–83 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. D’Mello, S. A., Finlay, G. J., Baguley, B. C. & Askarian-Amiri, M. E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 17, 1144; doi:10.3390/ijms17071144 (2016).

    Article  PubMed Central  Google Scholar 

  6. Busca, R. & Ballotti, R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment. Cell Res. 13, 60–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Park, H. Y., Kosmadaki, M., Yaar, M. & Gilchrest, B. A. Cellular mechanisms regulating human melanogenesis. Cell Mol. Life Sci. 66, 1493–1506 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Goding, C. R. Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 14, 1712–1728 (2000).

    CAS  PubMed  Google Scholar 

  9. Saha, B. et al. Activation of the Mitf promoter by lipid-stimulated activation of p38-stress signalling to CREB. Pigment Cell Res. 19, 595–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Atkinson, J. M. et al. Activating the Wnt/beta-Catenin Pathway for the Treatment of Melanoma-Application of LY2090314, a Novel Selective Inhibitor of Glycogen Synthase Kinase-3. PLoS One 10, e0125028 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Venugopala, K. N., Rashmi, V. & Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. Biomed. Res. Int. 2013, 963248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kabeya, L. M. et al. 7-Hydroxycoumarin modulates the oxidative metabolism, degranulation and microbial killing of human neutrophils. Chem. Biol Interact. 206, 63–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Mercolini, L. et al. Quantitative evaluation of auraptene and umbelliferone, chemopreventive coumarins in citrus fruits, by HPLC-UV-FL-MS. J. Agric. Food Chem. 61, 1694–1701 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Karthikeyan, R. et al. 7-Hydroxycoumarin prevents UVB-induced activation of NF-kappaB and subsequent overexpression of matrix metalloproteinases and inflammatory markers in human dermal fibroblast cells. J. Photochem. Photobiol. B 161, 170–176 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Asthana, S. et al. Structure-activity relationship study of hydroxycoumarins and mushroom tyrosinase. J. Agric. Food Chem. 63, 7236–7244 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Lacour, J. P., Gordon, P. R., Eller, M., Bhawan, J. & Gilchrest, B. A. Cytoskeletal events underlying dendrite formation by cultured pigment cells. J. Cell Physiol. 151, 287–299 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Romero, F. J., Zukowski, D. & Mueller-Klieser, W. Glutathione content of V79 cells in two-or three-dimensional culture. Am. J. Physiol. 272, C1507–1512 (1997).

    Google Scholar 

  18. Mastore, M., Kohler, L. & Nappi, A. J. Production and utilization of hydrogen peroxide associated with melanogenesis and tyrosinase-mediated oxidations of DOPA and dopamine. FEBS J. 272, 2407–2415 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Kayatz, P. et al. Oxidation causes melanin fluorescence. Invest. Ophthalmol. Vis. Sci. 42, 241–246 (2001).

    CAS  PubMed  Google Scholar 

  20. Wakamatsu, K., Nakanishi, Y., Miyazaki, N., Kolbe, L. & Ito, S. UVA-induced oxidative degradation of melanins: fission of indole moiety in eumelanin and conversion to benzothiazole moiety in pheomelanin. Pigment Cell Melanoma Res. 25, 434–445 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Maresca, V. et al. Correlation between melanogenic and catalase activity in in vitro human melanocytes: a synergic strategy against oxidative stress. Pigment Cell Melanoma Res. 21, 200–205 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Jenkins, N. C. & Grossman, D. Role of melanin in melanocyte dysregulation of reactive oxygen species. Biomed. Res. Int. 2013, 908797 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lin, J. Y. & Fisher, D. E. Melanocyte biology and skin pigmentation. Nature 445, 843–850 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Mouret, S., Forestier, A. & Douki, T. The specificity of UVA-induced DNA damage in human melanocytes. Photochem. Photobiol. Sci. 11, 155–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Swalwell, H., Latimer, J., Haywood, R. M. & Birch-Machin, M. A. Investigating the role of melanin in UVA/UVB-and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells. Free Radic Biol. Med. 52, 626–634 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Denat, L., Kadekaro, A. L., Marrot, L., Leachman, S. A. & Abdel-Malek, Z. A. Melanocytes as instigators and victims of oxidative stress. J. Invest. Dermatol. 134, 1512–1518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bickers, D. R. & Athar, M. Oxidative stress in the pathogenesis of skin disease. J. Invest. Dermatol. 126, 2565–2575 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Balasubramanian, S., Efimova, T. & Eckert, R. L. Green tea polyphenol stimulates a Ras, MEKK1, MEK3, and p38 cascade to increase activator protein 1 factor-dependent involucrin gene expression in normal human keratinocytes. J. Biol. Chem. 277, 1828–1836 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Balogun, E. et al. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J. 371, 887–895 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alia, M. et al. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide. Toxicol. Appl. Pharmacol. 212, 110–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Selimovic, D., Hassan, M., Haikel, Y. & Hengge, U. R. Taxol-induced mitochondrial stress in melanoma cells is mediated by activation of c-Jun N-terminal kinase (JNK) and p38 pathways via uncoupling protein 2. Cell Signal 20, 311–322 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, L. M. et al. P-hydroxycinnamaldehyde induces B16-F1 melanoma cell differentiation via the RhoA-MAPK signaling pathway. Cell Physiol. Biochem. 38, 2247–2260 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Baek, S. H. & Lee, S. H. Sesamol decreases melanin biosynthesis in melanocyte cells and zebrafish: Possible involvement of MITF via the intracellular cAMP and p38/JNK signalling pathways. Exp. Dermatol. 24, 761–766 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peng, H. Y., Lin, C. C., Wang, H. Y., Shih, Y. & Chou, S. T. The melanogenesis alteration effects of Achillea millefolium L. essential oil and linalyl acetate: involvement of oxidative stress and the JNK and ERK signaling pathways in melanoma cells. PLoS One 9, e95186 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu, M. et al. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 14, 301–312 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Levy, C., Sonnenblick, A. & Razin, E. Role played by microphthalmia transcription factor phosphorylation and its Zip domain in its transcriptional inhibition by PIAS3. Mol. Cell Biol. 23, 9073–9080 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, W. et al. Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp. Cell Res. 255, 135–143 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Medina, M. & Wandosell, F. Deconstructing GSK-3: The Fine Regulation of Its Activity. Int. J. Alzheimers Dis. 2011, 479249 (2011).

    PubMed  PubMed Central  Google Scholar 

  39. Qian, W. et al. PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta. J. Alzheimers Dis. 19, 1221–1229 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Takeda, K. et al. Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance. Hum. Mol. Genet. 9, 125–132 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Khaled, M. et al. Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis. J. Biol. Chem. 277, 33690–33697 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Kakade, V. R. et al. A cAMP and CREB-mediated feed-forward mechanism regulates GSK3beta in polycystic kidney disease. J. Mol. Cell Biol. 8, 464–476 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Grimes, C. A. & Jope, R. S. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog. Neurobiol. 65, 391–426 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Bellei, B., Flori, E., Izzo, E., Maresca, V. & Picardo, M. GSK3beta inhibition promotes melanogenesis in mouse B16 melanoma cells and normal human melanocytes. Cell Signal 20, 1750–1761 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Hosoi, J., Abe, E., Suda, T. & Kuroki, T. Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res. 45, 1474–1478 (1985).

    CAS  PubMed  Google Scholar 

  46. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  47. Neuschwander-Tetri, B. A. & Roll, F. J. Glutathione measurement by high-performance liquid chromatography separation and fluorometric detection of the glutathione-orthophthalaldehyde adduct. Anal. Biochem. 179, 236–241 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, S., You, D. H., Han, T. & Choi, E. M. Modulation of viability and apoptosis of UVB-exposed human keratinocyte HaCaT cells by aqueous methanol extract of laver (Porphyra yezoensis). J. Photochem. Photobiol. B 141C, 301–307 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Mi Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Ku, B., Kim, D. et al. Umbelliferone stimulated melanogenesis and increased glutathione level in B16F10 cells. Toxicol. Environ. Health Sci. 9, 152–160 (2017). https://doi.org/10.1007/s13530-017-0316-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-017-0316-2

Keywords

Navigation