Skip to main content
Log in

Quantitative analysis of hydrogen peroxide using ratiometric fluorescent probe-doped silica nanoparticles

  • Rapid communication
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2) is a representative indicator of various oxidative stresses. In this paper, we report a new silica nanoparticle platform using a combination of a multi-functional particle-based hybrid scaffold and ratiometric fluorescence probes, which can be self-calibrated for quantitative analysis. The chosen ratiometric fluorescent probe, Peroxy Lucifer 1 (PL1), was immobilized onto silica particles (PL1-SiO2) for the detection of cellular hydrogen peroxide by modulation of the internal charge transfer properties of the probe. In ratiometric analysis, a linear correlation between the hydrogen peroxide concentration and carbamate-derived emission intensities (F540/F470) was observed using PL1-SiO2. These silica particles doped with ratiometric fluorescent probes are a promising new scaffold for efficient determination of cellular hydrogen peroxide, which is a diagnostic biomarker of reactive oxygen metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Halliwell, B. Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. LeBel, C. P., Ischiropoulos, H. & Bondy, S. C. Evaluation of the probe 2', 7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5, 227–231 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Halliwell, B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am. J. Med. 91, S14–S22 (1991).

    Article  Google Scholar 

  5. D’Autréaux, B. & Toledano, M. B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).

    Article  PubMed  Google Scholar 

  6. Laloi, C., Apel, K. & Danon, A. Reactive oxygen signalling: the latest news. Curr. Opin. Plant Biol. 7, 323–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Sangodele, J. O., Olaleye, M. T., Monsees, T. K. & Akinmoladun, A. C. Redox status and sperm characteristics in 1, 4-dinitrobenzene-induced reproductive toxicity in Wistar rats. Toxicol. Environ. Health Sci. 9, 12–22 (2017).

    Article  Google Scholar 

  9. Rhee, S. G. H2O2, a necessary evil for cell signaling. Science 312, 1882–1883 (2006).

    Article  PubMed  Google Scholar 

  10. Maji, S. K., Sreejith, S., Mandal, A. K., Ma, X. & Zhao, Y. Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing. ACS Appl. Mater. Interfaces 6, 13648–13656 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Vandenabeele, S. et al. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc. Natl. Acad. Sci. U.S.A. 100, 16113–16118 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Veal, E. A., Day, A. M. & Morgan, B. A. Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Thannickal, V. J. & Fanburg, B. L. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung C 279, L1005–L1028 (2000).

    CAS  Google Scholar 

  14. Stone, J. R. & Yang, S. Hydrogen peroxide: a signaling messenger. Antioxid. Redox Signal. 8, 243–270 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh, R., Pradhan, A., Maity, P., Jana, K. & Choudhury, S. M. Lipid peroxidative damage, alterations in antioxidant status and morphological changes in rat erythrocytes on lambda-cyhalothrin exposure and its attenuation by taurine. Toxicol. Environ. Health Sci. 8, 315–326 (2016).

    Article  Google Scholar 

  16. Tabner, B. J., Turnbull, S., El-Agnaf, O. M. & Allsop, D. Formation of hydrogen peroxide and hydroxyl radicals from Aß and a-synuclein as a possible mechanism of cell death in Alzheimer’s disease and Parkinson’s disease 1, 2. Free Radic. Biol. Med. 32, 1076–1083 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, S., Yuan, R., Chai, Y. & Hu, F. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim. Acta 180, 15–32 (2013).

    CAS  Google Scholar 

  18. Katsounaros, I. et al. Hydrogen peroxide electrochemistry on platinum: towards understanding the oxygen reduction reaction mechanism. Phys. Chem. Chem. Phys. 14, 7384–7391 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, W., Cai, S., Ren, Q.-Q., Wen, W. & Zhao, Y.-D. Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137, 49–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, D. et al. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat. Mater. 6, 765–769 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Guo, J.-Z., Cui, H., Zhou, W. & Wang, W. Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. J. Photochem. Photobiol. A Chem. 193, 89–96 (2008).

    Article  CAS  Google Scholar 

  22. Kouno, H., Iwai, Y., Uchida, Y., Hirota, Y. & Nishiyama, N. Real-Time Observation of Hydrogen Peroxide Transport through the Oil Phase in a W/O/W Double Emulsion with Chemiluminescence Emission. Langmuir 33, 3802–3808 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Dickinson, B. C., Huynh, C. & Chang, C. J. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J. Am. Chem. Soc. 132, 5906–5915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kosaka, K., Yamada, H., Matsui, S., Echigo, S. & Shishida, K. Comparison among the methods for hydrogen peroxide measurements to evaluate advanced oxidation processes: application of a spectrophotometric method using copper (II) ion and 2,9-dimethyl-1,10-phenanthroline. Environ. Sci. Technol. 32, 3821–3824 (1998).

    Article  CAS  Google Scholar 

  26. Zhang, K., Mao, L. & Cai, R. Stopped-flow spectrophotometric determination of hydrogen peroxide with hemoglobin as catalyst. Talanta 51, 179–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, L. & Wang, E. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochem. Commun. 6, 225–229 (2004).

    Article  CAS  Google Scholar 

  28. Abo, M. et al. Development of a highly sensitive fluorescence probe for hydrogen peroxide. J. Am. Chem. Soc. 133, 10629–10637 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Hof, M., Hutterer, R. & Fidler, V. Fluorescence spectroscopy in biology: advanced methods and their applications to membranes, proteins, DNA, and cells. Vol. 3 (Springer Science & Business Media, 2004).

  30. Göhde, W. et al. Individual patient-dependent influence of erythrocyte lysing procedures on flow-cytometric analysis of leukocyte subpopulations. Transfus. Med. Hemother. 30, 165–170 (2003).

    Article  Google Scholar 

  31. Srikun, D., Miller, E. W., Domaille, D. W. & Chang, C. J. An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. J. Am. Chem. Soc. 130, 4596–4597 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Albers, A. E., Okreglak, V. S. & Chang, C. J. A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide. J. Am. Chem. Soc. 128, 9640–9641 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Chung, C., Srikun, D., Lim, C. S., Chang, C. J. & Cho, B. R. A two-photon fluorescent probe for ratiometric imaging of hydrogen peroxide in live tissue. Chem. Commun. 47, 9618–9620 (2011).

    Article  CAS  Google Scholar 

  34. Park, H., Yang, S. & Park, M.-H. Rapid and staggered release of small hydrophobic drugs using a micro-organogel embedded film. Toxicol. Environ. Health Sci. 6, 238–243 (2014).

    Article  Google Scholar 

  35. Ow, H. et al. Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett. 5, 113–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Jin, Y., Kannan, S., Wu, M. & Zhao, J. X. Toxicity of luminescent silica nanoparticles to living cells. Chem. Res. Toxicol. 20, 1126–1133 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Park, S. K., Kim, K. D. & Kim, H. T. Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Colloids Surf. A Physicochem. Eng. Asp. 197, 7–17 (2002).

    Article  CAS  Google Scholar 

  38. Burns, A., Ow, H. & Wiesner, U. Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem. Soc. Rev. 35, 1028–1042 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Bravo, J., Zhai, L., Wu, Z., Cohen, R. E. & Rubner, M. F. Transparent superhydrophobic films based on silica nanoparticles. Langmuir 23, 7293–7298 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Rao, K. S., El-Hami, K., Kodaki, T., Matsushige, K. & Makino, K. A novel method for synthesis of silica nanoparticles. J. Colloid Interface Sci. 289, 125–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Cano, M. & de la Cueva-Méndez, G. Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry. Chem. Commun. 51, 3620–3622 (2015).

    Article  CAS  Google Scholar 

  42. Wang, X. et al. Doxorubicin delivery to 3D multicellular spheroids and tumors based on boronic acid-rich chitosan nanoparticles. Biomaterials 34, 4667–4679 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  Google Scholar 

  44. Mijovic, J. & Wijaya, J. Reaction kinetics of epoxy/amine model systems. The effect of electrophilicity of amine molecule. Macromolecules 27, 7589–7600 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nakwon Choi or Myoung-Hwan Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Kim, H.S., Yang, Y. et al. Quantitative analysis of hydrogen peroxide using ratiometric fluorescent probe-doped silica nanoparticles. Toxicol. Environ. Health Sci. 9, 108–115 (2017). https://doi.org/10.1007/s13530-017-0310-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-017-0310-8

Keywords

Navigation