A comparison of the anti-bacterial and anti-inflammatory effect between two forms of chlorins

Abstract

Photodynamic therapy (PDT) is a treatment method based on irradiating the affected tissue with a light of suitable wavelength in the presence of a photosensitizer and O2, which generates reactive oxygen species via excitation of the photosensitizer resulting in the desired therapeutic effect. PDT has been clinically applied for the treatment of cancers and non-neoplastic diseases. Chlorin e6 (Ce6) is a promising representative of the chlorin platform photosensitizer with diverse variants. In this investigation, the photosensitizing effect of Ce6 and Tin-Ce6 was compared in vitro in the presence of halogen light, focusing on their antibacterial and anti-inflammatory effects. In conclusion, Ce6 was more effective than Tin-Ce6 in controlling the growth of microorganisms which reside on the skin and inflammatory molecules of the LPS-induced inflammatory response.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Sibata, C. H., Colussi, V. C., Oleinick, N. L. & Kinsella, T. J. Photodynamic therapy: a new concept in medical treatment. Braz. J. Med. Biol. Res. 33, 869–880 (2000).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Quirk, B. J. et al. Photodynamic therapy (PDT) for malignant brain tumors -Where do we stand? Photodiagn Photodyn. Ther. 12, 530–544 (2015).

    Article  Google Scholar 

  3. 3.

    Szeimies, R. M. et al. Photodynamic therapy for skin rejuvenation: treatment options -results of a consensus conference of an expert group for aesthetic photodynamic therapy. JDDG 11, 632–636 (2013).

    PubMed  Google Scholar 

  4. 4.

    Circu, M. L. & Aw, T. Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol. Med. 48, 749–762 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Jeon, Y. M. et al. Antimicrobial photodynamic therapy using chlorin e6 with halogen light for acne bacteriainduced inflammation. Life Sci. 124, 56–63 (2015).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Sharma, S. K. et al. Drug discovery of antimicrobial photosensitizers using animal models. Curr. Pharm. Des. 17, 1303–1319 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Sperandio, F. F., Huang, Y. Y. & Hamblin, M. R. Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Pat. Antiinfect Drug Discov. 8, 108–120 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kim, J. H., Han, C. S., Chun, S. N. & Lee, M. Y. Photodynamic inactivation of chlorin e6 with halogen light against dermatophytes. Toxicol. Environ. Health. Sci. 6, 170–175 (2014).

    Article  Google Scholar 

  9. 9.

    Reinhard, A. et al. Photodynamic therapy as a new treatment modality for inflammatory and infectious conditions. Expert. Rev. Clin. Immunol. 11, 637–657 (2015).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Castano, A. P., Demidova, T. N. & Hamblin, M. R. Mechanism in photodynamic therapy: part one-photosensitizers, photo chemistry and cellular localization. Photodiagnosis Photodyn. Ther. 1, 279–293 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Wang, J. et al. Photosensitizer-gold nanorod composite for targeted multimodal therapy. Small 9, 3678–3684 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Thierry Patrice. In Photodynamic Therapy (Royal Society of Chemistry, The, 2003).

  13. 13.

    Khaled, A., Kjalid, O. & Jaafar, M. S. pH effect on cellular uptake of Sn(IV) chlorine e6 dichloride trisodium salt by cancer cells in vitro. J. Biol. Phys. 37,153–161 (2011).

    Article  Google Scholar 

  14. 14.

    Mojzisova, H., Bonneau, S., Verver-Bizet, C. & Brault, D. Cellular uptake and subcellular distribution of chlorin e6 as functions of pH and interactions with membranes and lipoproteins. Biochim. Biophys. Acta. 1768, 2748–2756 (2007).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Du, D., Wang, K., Wen, Y., Li, Y. & Li, Y. Y. Photodynamic graphene quantum dot: reduction condition regulated photoactivity and size dependent efficacy. ACS Appl. Mater. Interfaces. 8, 3287–3294 (2016).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Rakestraw, S. L. et al. Antibody-targeted photolysis: in vitro immunological, photophysical, and cytotoxic properties of monoclonal antibody-dextran-Sn(1V) chlorin e6 immunoconjugates. Biotechnol. Frog. 8, 30–39 (1992).

    CAS  Google Scholar 

  17. 17.

    Josefsen, L. B., Boyle, R. W. Photodynamic therapy and the development of metal-based photosensitisers. Met. Based Drugs. 2008, 23 (2008).

    Article  Google Scholar 

  18. 18.

    Rousset, N., Bourré, L. & Thibaud, S. in Sensitizers in photodynamic therapy. in Photodynamic Therapy (ed Patrice, T.) 59–80 (RS·C, UK,2003).

    Google Scholar 

  19. 19.

    Jesús, G. T. et al. Lethal photosensitisation of bacteria using a tin chlorin e6-glutathione-gold nanoparticle conjugate. J. Mater. Chem. 21, 4189–4196 (2011).

    Article  Google Scholar 

  20. 20.

    Tomasz, A. Multiple-antibiotic-resistant pathogenic bacteria. A report on the Rockefeller University Workshop. N. Engl. J. Med. 330, 1247–1251 (1994).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Sharma, S. & Verma, K. K. Skin and soft tissue infection. Indian J. Pediatr. 68, 46–50 (2001).

    Google Scholar 

  22. 22.

    Misko, M. L., Terracina, J. R. & Diven, D. G. The frequency of erythromycin-resistant Staphylococcus aureus in impetiginized dermatoses. Pediatr. Dermatol. 12, 12–15 (1995).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Neves, J. R. et al. Propionibacterium acnes and bacterial resistance. Surg. Cosmet. Dermatol. 7, 27–38 (2015).

    Google Scholar 

  24. 24.

    Kim, J. E., Hur, H. J., Lee, K. W. & Lee, H. J. Antiinflammatory effects of recombinant arginine deiminase originating from Lactococcus lactis ssp. lactis ATCC 7962. J. Microbiol. Biotechnol. 17, 1491–1497 (2007).

    CAS  PubMed  Google Scholar 

  25. 25.

    Zhang, J. H., Shangguan, Z. S., Chen, C., Zhang, H. J. & Lin, Y. Anti-inflammatory effects of guggulsterone on murine macrophage by inhibiting LPS-induced inflammatory cytokines in NF-κB signaling pathway. Drug Des. Devel. Ther. 10, 1829–1835 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Zahner, G. et al. Cyclooxygenase-2 overexpression inhibits platelet-derived growth factor-induced mesangial cell proliferationthrough induction of the tumor suppressor gene p53 and the cyclin-dependent kinase inhibitors p21 waf-1/cip-1 and p27kip-1. J. Biol. Chem. 277, 9763–9771 (2002).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Ryu, A. R., Han, C. S., Oh, H. K. & Lee M. Y. Chlorin e6-mediated Photodynamic Inactivation with Halogen Light against Microbes and Fungus. Toxicol. Environ. Health. Sci. 7, 231–238 (2015).

    Article  Google Scholar 

  28. 28.

    Ryu, A. R., Wang, Y. Y. & Lee, M. Y. Differential protein expression associated with photodynamic therapy using chlorin e6. Mol. Cell. Toxicol. 10, 423–431 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Cha, S. M., Cha, J. D., Jang, E. J., Kim, G. U. & Lee, K. Y. Sophoraflavanone G prevents Streptococcus mutans surface antigen I/II-induced production of NO and PGE2 by inhibiting MAPK-mediated pathways in RAW 264.7 macrophages. Arch. Oral. Biol. 68, 97–104 (2016).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Al-Mariri, A. & Safi, M. The antibacterial activity of selected labiatae (Lamiaceae) essential oils against Brucella melitensis. Iran J. Med. Sci. 38, 44–50 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Cos, P., Vlietinck, A. J., Berghe, D. V. & Maes, L. Antiinfective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 106, 290–302 (2006).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Han, S., Lee, K., Yeo, J., Baek, H. & Park, K. Antibacterial and anti-inflammatory effects of honeybee (Apis mellifera) venom against acne-inducing bacteria. J. Med. Plants Res. 4, 459–464 (2010).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mi-Young Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Ryu, AR., Han, CS. et al. A comparison of the anti-bacterial and anti-inflammatory effect between two forms of chlorins. Toxicol. Environ. Health Sci. 8, 271–276 (2016). https://doi.org/10.1007/s13530-016-0285-x

Download citation

Keywords

  • Photodynamic therapy
  • Ce6
  • Tin-Ce6