Skip to main content
Log in

Forensic analysis using microbial community between skin bacteria and fabrics

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Microorganisms flourish on and in the human body and skin surfaces are the largest. The skin surface microbiota can be transferred to an object upon touch. This has forensic implications. This study explored the hypothesis that residual skin bacteria left on fabrics could be valuable for forensic analysis. A nonculture based approach was used, since it can reveal a more diverse microbiome than culture-based methods. Fabrics examined were 100% cotton, 55% cotton - 45% polyester fabric, and 100% polyester. Three volunteers firmly grasped each fabric, and the DNA of all the samples was extracted and analyzed for the 16S rRNA gene. The 454-Next generation sequencing was used to observe the microbiome community relation between the individual and the fabrics in dendrogram and PCoA graph analyses. The analyses confirmed that the touched fabrics retained microorganisms from the individual. The study reveals the potential value of the approach in forensic examinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shrivastava, P., Jain, T. & Gupta, M. K. Microbial Forensics in Legal Medicine. SAS J. Med. 1, 33–40 (2015).

    Google Scholar 

  2. Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449, 811–818 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Wilson, M. in Bacteriology of humans: an ecological perspective (John Wiley & Sons, 2009).

    Google Scholar 

  4. Fredricks, D. N. Microbial ecology of human skin in health and disease. J. Investig. Dermatol. Symp. Proc. 6, 167–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Smith, S. M., Eng, R. H. & Padberg, F. T., Jr. Survival of nosocomial pathogenic bacteria at ambient temperature. J. med. 27, 293–302 (1996).

    CAS  PubMed  Google Scholar 

  6. Brooke, J. S., Annand, J. W., Hammer, A., Dembkowski, K. & Shulman, S. T. Investigation of bacterial pathogens on 70 frequently used environmental surfaces in a large urban U.S. university. J. Environ. Health 71, 17–22 (2009).

    PubMed  Google Scholar 

  7. Alan, G. & Sarah, J. P. Microbes as forensic indicators. Trop. biomed. 29, 311–330 (2012).

    CAS  PubMed  Google Scholar 

  8. Torsvik, V., Goksøyr, J. & Daae, F. L. High diversity in DNA of soil bacteria. Appl. environ. microbiol. 56, 782–787 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Torsvik, V. & Øvreås, L. Microbial diversity and function in soil: from genes to ecosystems. Curr. opin. microbiol. 5, 240–245 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Li, K., Bihan, M., Yooseph, S. & Methe, B. A. Analyses of the microbial diversity across the human microbiome. PLoS One 7, e32118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nature methods 9, 811–814 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Amann, R. I., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. rev. 59, 143–169 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Budowle, B., Murch, R. & Chakraborty, R. Microbial forensics: the next forensic challenge. Int. j. legal. med. 119, 317–330 (2005).

    Article  PubMed  Google Scholar 

  14. van Oorschot, R. A. & Jones, M. K. DNA fingerprints from fingerprints. Nature 387, 767 (1997).

    Article  PubMed  Google Scholar 

  15. Raymond, J. J., van Oorschot, R. A., Gunn, P. R., Walsh, S. J. & Roux, C. Trace evidence characteristics of DNA: A preliminary investigation of the persistence of DNA at crime scenes. Forensic sci. int. Genet. 4, 26–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Rudbeck, L. & Dissing, J. Rapid, simple alkaline extraction of human genomic DNA from whole blood, buccal epithelial cells, semen and forensic stains for PCR. BioTechniques 25, 588–590, 592 (1998).

    CAS  PubMed  Google Scholar 

  17. Daly, D. J., Murphy, C. & McDermott, S. D. The transfer of touch DNA from hands to glass, fabric and wood. Forensic sci. int. Genet. 6, 41–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Turnbaugh, P. J. et al. The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heck Jr, K. L., van Belle, G. & Simberloff, D. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 1459–1461 (1975).

    Article  Google Scholar 

  20. Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamady, M., Lozupone, C. & Knight, R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME j. 4, 17–27 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, S., Woo, S., Choi, G., Hong, H. & Eom, Y. Microbial Forensic Analysis of Bacterial Fingerprint by Sequence Comparison of 16S rRNA Gene. J. Forensic. Res. 6, 2 (2015).

    Google Scholar 

  23. Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pennisi, E. Microbiology. Bacteria are picky about their homes on human skin. Science 320, 1001 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Fierer, N. et al. Forensic identification using skin bacterial communities. Proc. Natl. Acad. Sci. USA 107, 6477–6481 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leake, S. L. Is human DNA enough? -potential for bacterial DNA. Front. genet. 4, 282 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Paulino, L. C., Tseng, C. H., Strober, B. E. & Blaser, M. J. Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J. Clin. Microbiol. 44, 2933–2941 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome. Res. 18, 1043–1050 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chun, J., Kim, K. Y., Lee, J. H. & Choi, Y. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol. 10, 101 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hur, M. et al. Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings. Appl. Environ. Microbiol. 77, 7611–7619 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, B. S., Kim, J. N., Yoon, S. H., Chun, J. & Cerniglia, C. E. Impact of enrofloxacin on the human intestinal microbiota revealed by comparative molecular analysis. Anaerobe 18, 310–320 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Huber, T., Faulkner, G. & Hugenholtz, P. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20, 2317–2319 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Kim, O. S. et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. j. syst. evol. microbiol. 62, 716–721 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Bin Eom.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SY., Woo, SK., Lee, SM. et al. Forensic analysis using microbial community between skin bacteria and fabrics. Toxicol. Environ. Health Sci. 8, 263–270 (2016). https://doi.org/10.1007/s13530-016-0284-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-016-0284-y

Keywords

Navigation