Advertisement

Toxicology and Environmental Health Sciences

, Volume 8, Issue 3, pp 189–200 | Cite as

Effects of rare earth elements on the environment and human health: A literature review

  • Kyung-Taek RimEmail author
Mini review

Abstract

REEs are a group of metals comprised of yttrium, fourteen lanthanide elements, and scandium, which have been called ‘industrial vitamins’ and a ‘treasury’ of novel materials due to their dominant role in technical progress and in the development of traditional industries. Despite the growing interest, information that has become available over the last two decades regarding RREs is relatively premature and scarce, which has led to the current controversy regarding the health benefits vs toxic effects of these materials. There are many environmental and health issues associated the production, processing, and utilization of REEs. This review offers an examination of the roles of REEs in the onset of cellular oxidative stress in reference to the impact of REE exposure to cells, animals, and plants, in order to explain disease and occupational poisoning of local residents, water pollution, and farmland destruction. Conversely, a body of evidence has shown REE-associated antioxidant effects in the treatment of many diseases. The content herein is aimed at presenting the recent and pending developments in the field of REE with respect to environmental and human health implications. Multi-faceted updates on the roles of REEs focusing on different organisms and exposure routes, and several issues regarding environmental and biological research, are discussed. The current gaps in information raise a number of open questions that deserve ad hoc investigation.

Keywords

Rare earth element Environment Health Review 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atwood, D. A. in The Rare Earth Elements: Fundamentals and Applications (Wiley, USA, 2012).Google Scholar
  2. 2.
    Rare earths, http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/myb1-2013-raree.pdf (2013).Google Scholar
  3. 3.
    Rare Earth Elements: The Global Supply Chain, https://archive.org/details/R41347RareEarthElementsThe GlobalSupplyChain-crs (2013).Google Scholar
  4. 4.
    Izyumov, A. & Plaksin, G. in Cerium: Molecular Structure, Technological Applications and Health Effects (Nova Science Publishers, USA, 2013).Google Scholar
  5. 5.
    Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues (EPA 600/R-12/572), www.epa.gov/ord (2012).Google Scholar
  6. 6.
    Zepf, V. in A New Approach to the Nexus of Supply, Demand and Use: Exemplified along the Use of Neodymium in Permanent Magnets (Springer Theses ©, Germany, 2013).Google Scholar
  7. 7.
    Du, X. & Graedel, T. E. Uncovering the global life cycles of the rare earth elements. Sci. Rep. 1, 145 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang, L., Huang, X. & Zhou, Q. Protective effect of rare earth against oxidative stress under ultraviolet-B radiation. Biol. Trace Elem. Res. 128, 82–93 (2009).CrossRefPubMedGoogle Scholar
  9. 9.
    Bellin, M. F. & Van Der Molen, A. Extracellular gadolinium-based contrast media: an overview. Eur. J. Radiol., 66, 160–167 (2008).CrossRefPubMedGoogle Scholar
  10. 10.
    Corma, A., Atienzar, P., Garcia, H. & Chane-Ching, J. Y. Hierarchically mesostructured doped CeO2 with potential for solar cell use. Nature Mater. 3, 394–397 (2004).CrossRefGoogle Scholar
  11. 11.
    Khan, S. B., Faisal, M., Rahman, M. M. & Jamal, A. Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci. Total Environ. 409, 2987–2992 (2011).CrossRefPubMedGoogle Scholar
  12. 12.
    Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues, EPA 600/R-12/572, www.epa.gov/ord (2012).Google Scholar
  13. 13.
    Wu, J. et al. Lanþhanum induced primary neuronal apoptosis through mitochondrial dysfunction modulated by Ca2þ and Bcl-2 family. Biol. Trace Elem. Res. 152, 125–134 (2013).CrossRefPubMedGoogle Scholar
  14. 14.
    Giri, S. et al. Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer. PLoS One 8, e54578 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pagano, G., Guida, M., Tommasi, F. & Oral, R. Health effects and toxicity mechanisms of rare earth elements -Knowledge gaps and research prospects. Ecotoxicol. Environ. Saf. 115C, 40–48 (2015).CrossRefGoogle Scholar
  16. 16.
    Pagano, G. et al. Human exposures to rare earth elements: State of art and research priorities. Environ. Res. 142, 215–220 (2015).CrossRefPubMedGoogle Scholar
  17. 17.
    Rim, K. T., Koo, K. H. & Park, J. S. Toxicological evaluations of rare earths and their health impacts to workers: A literature review. Saf. Health Work 4, 12–26 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Peng, R. L, Pan, X. C. & Xie, Q. Relationship of the hair content of rare earth elements in young children aged 0 to 3 years to that in their mothers living in a rare earth mining area of Jiangxi. Zhonghua Yu Fang Yi Xue Za Zhi 37, 20–22 (2003).PubMedGoogle Scholar
  19. 19.
    Tong, S. L. et al. Distribution characteristics of rare earth elements in children’s scalp hair from a rare earths mining area in southern China. J. Environ. Sci._Health A Tox. Hazard Subst. Environ. Eng. 39, 2517–2532 (2004).CrossRefPubMedGoogle Scholar
  20. 20.
    Liang, C. & Wang, W. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain. Environ. Sci. Pollut. Res. Int. 20, 8182–8191 (2013).CrossRefPubMedGoogle Scholar
  21. 21.
    Wang, L., Wang, W., Zhou, Q. & Huang, X. Combined effects of lanthanum (III) chloride and acid rain on photosynthetic parameters in rice. Chemosphere 112, 355–361 (2014).CrossRefPubMedGoogle Scholar
  22. 22.
    Wen, K., Liang, C., Wang, L., Hu, G. & Zhou, Q. Combined effects of lanthanum ion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings. Chemosphere 84, 601–608 (2011).CrossRefPubMedGoogle Scholar
  23. 23.
    Bustamante, P. & Miramand, P. Subcellular and body distributions of 17 trace elements in the variegated scallop Chlamys varia from the French coast of the Bay of Biscay. Sci. Total Environ. 337, 59–73 (2005).CrossRefPubMedGoogle Scholar
  24. 24.
    Herrmann, H., Nolde, J., Berger, S. & Heise, S. Aquatic ecotoxicity of lanthanum-A review and an attempt to derive water and sediment quality criteria. Ecotoxicol. Environ. Saf. 124, 213–238 (2016).CrossRefPubMedGoogle Scholar
  25. 25.
    Cassee, F. R. et al. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice. Environ. Res. 115, 1–10 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cassee, F. R. et al. Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit. Rev. Toxicol. 41, 213–229 (2011).CrossRefPubMedGoogle Scholar
  27. 27.
    Ma, J. Y. et al. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis. Toxicol. Appl. Pharmacol. 278, 135–147 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Snow, S. J. et al. Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects. Toxicol. Sci. 142, 403–417 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yoon, H. K. et al. Dendriform pulmonary ossification in patient with rare earth pneumoconiosis. Thorax 60, 701–703 (2005).CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ramalho, J. et al. Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update. Am. J. Neuroradiol. 37, 1192–1198 (2016).CrossRefPubMedGoogle Scholar
  31. 31.
    Thomsen, H. S. Nephrogenic systemic fibrosis: A serious late adverse reaction to gadodiamide. Eur. Radiol. 16, 2619–2621 (2006).CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    He, M. L., Ranz, D. & Rambeck, W. A. Study on the performance enhancing effect of rare earth elements in growing and finishing pigs. J. Anim. Physiol. Anim. Nutr. 85, 263–270 (2001).CrossRefGoogle Scholar
  33. 33.
    Pang, X., Li, D. & Peng, A. Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. Environ. Sci. Pollut. Res. Int. 9, 143–148 (2002).CrossRefPubMedGoogle Scholar
  34. 34.
    Rare Earth Elements in Agriculture with Emphasis on Animal Husbandry, https://edoc.ub.uni-muenchen.de/5936/1/Redling_Kerstin.pdf (2006).Google Scholar
  35. 35.
    Carpenter, D., Boutin, C., Allison, J. E., Parsons, J. L. & Ellis, D. M. Uptake and effects of six rare earth elements (REEs) on selected native and crop species growing in contaminated soils. PLoS One 10, e0129936 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Goecke, F. et al. Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta). Front. Microbiol. 6, 2 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jenkins, W. et al. Fibroblast response to lanthanoid metal ion stimulation: potential contribution to fibrotic tissue injury. Biol. Trace Elem. Res. 144, 621–635 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Liu, D. et al. The dual-effects of LaCl3 on the proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells. Biol. Trace Elem. Res. 150, 433–440 (2012).CrossRefPubMedGoogle Scholar
  39. 39.
    Pol, A. et al. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ. Microbiol. 16, 255–264 (2014).CrossRefPubMedGoogle Scholar
  40. 40.
    McDonald, J. W. et al. Rare earth (cerium oxide) pneumoconiosis: analytical scanning electron microscopy and literature review. Mod. Pathol. 8, 859–865 (1995).PubMedGoogle Scholar
  41. 41.
    Huang, P. et al. Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepathocytes: accumulation and oxidative damage. Environ. Toxicol. Pharmacol. 31, 25–32 (2011).CrossRefPubMedGoogle Scholar
  42. 42.
    Xia, Q. et al. Gadolinium-induced oxidative stress triggers endoplasmic reticulum stress in rat cortical neurons. J. Neurochem. 117, 38–47 (2011).CrossRefPubMedGoogle Scholar
  43. 43.
    Hong, J. et al. Pulmonary toxicity in mice following exposure to cerium chloride. Biol. Trace Elem. Res. 159, 269–277 (2014).CrossRefPubMedGoogle Scholar
  44. 44.
    Liang, T., Li, K. & Wang, L. State of rare earth elements in different environmental components in mining areas of China. Environ. Monit. Assess. 186, 1499–1513 (2014).CrossRefPubMedGoogle Scholar
  45. 45.
    Zhao, L. et al. Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACSnano 6, 9615–9622 (2012).Google Scholar
  46. 46.
    Pirmohamed, T. et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 46, 2736–2738 (2010).CrossRefGoogle Scholar
  47. 47.
    Xu, C. & Qu, X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Materials 6, e90 (2014).CrossRefGoogle Scholar
  48. 48.
    Sholkovitz, E. R., Landing, W. M. & Lewis, L. Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochim. Cosmochim. Acta 58, 1567–1579 (1994).CrossRefGoogle Scholar
  49. 49.
    Karakoti, A., Singh, S., Dowding, J. M., Seal, S. & Self, W. T. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 39, 4422–4432 (2010).CrossRefPubMedGoogle Scholar
  50. 50.
    Oral, R. et al. Cytogenetic and developmental toxicity of cerium and lanthanum to sea urchin embryos. Chemosphere 81, 194–198 (2010).CrossRefPubMedGoogle Scholar
  51. 51.
    Pagano, G. et al. Comparative toxicities of selected rare earth elements: Sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects. Environ. Res. 147, 453–460 (2016).CrossRefPubMedGoogle Scholar
  52. 52.
    Park, E.-J., Choi, J., Park, Y.-K. & Park, K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicol. 245, 90–100 (2008).CrossRefGoogle Scholar
  53. 53.
    Calabrese, E. J. Hormesis is central to toxicology, pharmacology and risk assessment. Hum. Exp. Toxicol. 29, 249–261 (2010).CrossRefPubMedGoogle Scholar
  54. 54.
    Calabrese, E. J. Hormetic mechanisms. Crit. Rev. Toxicol. 43, 580–606 (2013).CrossRefPubMedGoogle Scholar
  55. 55.
    Pagano, G., Guida, M., Tommasi, F. & Oral, R. Health effects and toxicity mechanisms of rare earth elements Knowledge gaps and research prospects. Ecotoxicol. Environ. Saf. 115, 40–48 (2015).CrossRefPubMedGoogle Scholar
  56. 56.
    Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006).CrossRefPubMedGoogle Scholar
  57. 57.
    Oberdorster, G., Oberdorster, E. & Oberdorster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839 (2005).CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Baer, D. R. et al. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. J. Vac. Sci. Technol. A, 31, 50820 (2013).CrossRefPubMedGoogle Scholar
  59. 59.
    Karakoti, A. et al. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 39, 4422–4432 (2010).CrossRefPubMedGoogle Scholar
  60. 60.
    Korsvik, C., Patil, S., Seal, S. & Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. (Camb), 10, 1056–1058 (2007).CrossRefGoogle Scholar
  61. 61.
    Lee, S. S. et al. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 7, 9693–9703 (2013).CrossRefPubMedGoogle Scholar
  62. 62.
    Pirmohamed, T. et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. (Camb) 46, 2736–2738 (2010).CrossRefGoogle Scholar
  63. 63.
    Wong, L. L. et al. Defining the Catalytic Activity of Nanoceria in the P23H-1 Rat, a Photoreceptor Degeneration Model. PLoS One 10, e0121977 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Caputo, F., De Nicola, M. & Ghibelli, L. Pharmacological potential of bioactive engineered nanomaterials. Biochemical Pharmacology 92, 112–130 (2014).CrossRefPubMedGoogle Scholar
  65. 65.
    Wong, L. L. & McGinnis, J. F. Nanoceria as bona fide catalytic antioxidants in medicine: what we know and what we want to know. Adv. Exp. Med. Biol. 801, 821–828 (2014).CrossRefPubMedGoogle Scholar
  66. 66.
    Halliwell, B. & Gutteridge, J. M. C. in Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death, Free Radicals in Biology and Medicine. 4th Edn (Oxford University Press, USA, 2007).Google Scholar
  67. 67.
    Assay Guidance Mannual, https://www.ncbi.nlm.nih. gov/books/NBK144065/pdf/Bookshelf_NBK144065. pdf (2016).Google Scholar
  68. 68.
    Cell-permeant 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), https://www.thermofisher.com/order/catalog/product/D399 (2015).Google Scholar
  69. 69.
    Rothen-Rutishauser, B. et al. Direct combination of nanoparticle fabrication and exposure to lung cell cultures in a closed setup as a method to simulate accidental nanoparticle exposure of humans. Environ. Sci. Technol. 43, 2634–2640 (2009).CrossRefPubMedGoogle Scholar
  70. 70.
    Das, M. et al. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28, 1918–1925 (2007).CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Szymanski, C. J. et al. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles. Biomaterials 62, 147–154 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Drescher, D. & Kneipp, J. Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chem. Soc. Rev. 41, 5780–5799 (2012).CrossRefPubMedGoogle Scholar
  73. 73.
    Keating, M. E. & Byrne, H. J. Raman spectroscopy in nanomedicine: current status and future perspective. Nanomedicine (Lond) 8, 1335–1351 (2013).CrossRefGoogle Scholar
  74. 74.
    Das, S. et al. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine (Lond), 8, 1483–1508 (2013).CrossRefGoogle Scholar
  75. 75.
    Pierscionek, B. K. et al. Nanoceria have no genotoxic effect on human lens epithelial cells. Nanotechnology 21, 035102 (2010).CrossRefPubMedGoogle Scholar
  76. 76.
    Schubert, D., Dargusch, R., Raitano, J. & Chan, S. W. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem. Biophys. Res. Commun. 342, 86–91 (2006).CrossRefPubMedGoogle Scholar
  77. 77.
    Wong, L.L. & McGinnis, J. F. Nanoceria as bona fide catalytic antioxidants in medicine: what we know and what we want to know. Adv. Exp. Med. Biol. 801, 821–828 (2014).CrossRefPubMedGoogle Scholar
  78. 78.
    Schulz, H. Über Hefegifte, Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere 42, 517–541 (1888).CrossRefGoogle Scholar
  79. 79.
    Calabrese, E. J. Hormetic mechanisms. Crit. Rev. Toxicol. 43, 580–586 (2013).CrossRefPubMedGoogle Scholar
  80. 80.
    Stebbing, A. R. Hormesis-the stimulation of growth by low levels of inhibitors. Sci. Total Environ. 22, 213–234 (1982).CrossRefPubMedGoogle Scholar
  81. 81.
    Cai, X., Seal, S. & McGinnis, J. F. Sustained inhibition of neovascularization in vldlr-/-mice following intravitreal injection of cerium oxide nanoparticles and the role of the ASK1-P38/JNK-NF-kappaB pathway. Biomaterials 35, 249–258 (2014).CrossRefPubMedGoogle Scholar
  82. 82.
    von Montfort, C., Alili, L., Teuber-Hanselmann, S. & Brenneisen, P. Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage. Redox Biol. 4, 1–5 (2015).CrossRefGoogle Scholar
  83. 83.
    Park, E. J., Choi, J., Park, Y. K. & Park, K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245, 90–100 (2008).CrossRefPubMedGoogle Scholar
  84. 84.
    Lee, T. L., Raitano, J. M., Rennert, O. M., Chan, S. W. & Chan, W. Y. Accessing the genomic effects of naked nanoceria in murine neuronal cells. Nanomedicine 8, 599–608 (2012).PubMedGoogle Scholar
  85. 85.
    Ciofani, G., Genchi, G. G., Mazzolai, B. & Mattoli, V. Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochim. Biophys. Acta 1840, 495–506 (2014).CrossRefPubMedGoogle Scholar
  86. 86.
    Ciofani, G. et al. Effects of cerium oxide nanoparticles on PC12 neuronal-like cells: proliferation, differentiation, and dopamine secretion. Pharm. Res. 30, 2133–2145 (2013).CrossRefPubMedGoogle Scholar
  87. 87.
    Vieira, H. L., Alves, P. M. & Vercelli, A. Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species. Prog. Neurobiol. 93, 444–455 (2011).CrossRefPubMedGoogle Scholar
  88. 88.
    Das, S. et al. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials 33, 7746–7755 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294–309 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Muller, B. A. & Dhalla, N. S. Mechanisms of the beneficial actions of ischemic preconditioning on subcellular remodeling in ischemic-reperfused heart. Curr. Cardiol. Rev., 6, 255–264 (2010).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Korean Society of Environmental Risk Assessment and Health Science and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Chemicals Toxicity Research Bureau, Occupational Safety and Health Research InstituteKorea Occupational Safety and Health AgencyDaejeonRepublic of Korea

Personalised recommendations