Skip to main content
Log in

Transcriptional responses in Ecklonia cava to short-term exposure to hyperthermal stress

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Rapid climate change accelerates the damage to many valuable marine ecosystems, including macroalgal forests and coral reefs. To understand the biological responses of kelp species to increased seawater temperatures, we isolated the genes that responded to hyperthermal stress conditions in Ecklonia cava. Thalli of E. cava were exposed to seawater at 20 or 24°C, and the genes whose transcript levels changed in response to hyperthermal stress were identified with microarray hybridization. Eighty-nine candidate genes were identified, 49 of which were upregulated and 40 were downregulated by hyperthermal stress. Gene Ontology mapping showed that cellular oxidant detoxification, the regulation of cellular metabolic processes, and photosynthesis processes were affected by increased ocean temperatures. The functions of some isolated genes were also analyzed to predict the possible changes in the metabolism of E. cava under hyperthermal stress. The differentially expressed genes isolated here may serve as molecular biomarkers, allowing us to better understand the biological responses of marine organisms to environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, K. C. et al. Fucodiphlorethol G Purified from Ecklonia cava suppresses ultraviolet B radiation-induced oxidative stress and cellular damage. Biomol. Ther. (Seoul) 22, 301–307 (2014).

    Article  CAS  Google Scholar 

  2. Park, M. H. et al. 6,6'-bieckol isolated from Ecklonia cava protects oxidative stress through inhibiting expression of ROS and proinflammatory enzymes in highglucoseinduced human umbilical vein endothelial cells. Appl. Biochem. Biotechnol. 174, 632–643 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Jang, S. K. et al. The anti-aging properties of a human placental hydrolysate combined with dieckol isolated from Ecklonia cava. BMC Complement Altern. Med. 15, 345 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Choi, B. W., Lee, H. S., Shin, H. C. & Lee, B. H. Multifunctional activity of polyphenolic compounds associated with a potential for Alzheimer’s disease therapy from Ecklonia cava. Phytother. Res. 29, 549–553 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Park, E. Y. et al. Polyphenol-rich fraction of Ecklonia cava improves nonalcoholic fatty liver disease in high fat diet-fed Mice. Mar. Drugs 13, 6866–6883 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yamashita, H., Goto, M., Matsui-Yuasa, I. & KojimaYuasa, A. Ecklonia cava polyphenol has a protective effect against ethanol-induced liver injury in a cyclic AMP-dependent manner. Mar. Drugs 13, 3877–3891 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. You, H. N. et al. Phlorofucofuroeckol A isolated from Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice. Eur. J. Pharmacol. 752, 92–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Woo, S. et al. Differential gene expression in a red alga Gracilaria textorii (Suringar) Hariot (Gracilariales. Florideophyceae) between natural populations. Mol. Cell Toxicol. 4, 199–204 (2008).

    Google Scholar 

  9. Woo, S., Ko, Y. W., Kim, J. H. & Yum, S. Changes in gene expression in the brown alga Undaria pinnatifida (Harvey) Suringar (Laminariales. Pheophyceae) between natural populations. Toxicol. Environ. Health Sci. 3, 91–96 (2011).

    Article  Google Scholar 

  10. Cosse, A., Potin, P. & Leblanc, C. Patterns of gene expression induced by oligoguluronates reveal conserved and environment-specific molecular defense responses in the brown alga Laminaria digitata. Ne. Phytol. 182, 239–250 (2009).

    Article  CAS  Google Scholar 

  11. Hayes, J. D. & Pulford, D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30, 445–600 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Konig, J. et al. The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc. Natl. Acad. Sci. USA 99, 5738–5743 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dietz, K. J., Horling, F., Konig, J. & Baier, M. The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J. Exp. Bot. 53, 1321–1329 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Jaiswal, A. K. Regulation of genes encoding NAD(P) H:quinone oxidoreductases. Free Radic. Biol. Med. 29, 254–262 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Siegel, D. et al. NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol. Pharmacol. 65, 1238–1247 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Shen, J. R., Ikeuchi, M. & Inoue, Y. Analysis of the psbU gene encoding the 12-kDa extrinsic protein of photosystem II and studies on its role by deletion mutagenesis in Synechocystis sp. PCC 6803. J. Biol. Chem. 272, 17821–17826 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Haslbeck, M. sHsps and their role in the chaperone network. Cell Mol. Lif. Sci. 59, 1649–1657 (2002).

    Article  CAS  Google Scholar 

  18. Gupta, R. S. Evolution of the chaperonin families (Hsp60. Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol. Microbiol. 15, 1–11 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Walker, G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48, 60–93 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Coughlan, M. P. & Hazlewood, G. P. beta-1,4-D-xylandegrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17, 259–289 (1993).

    CAS  PubMed  Google Scholar 

  21. He, J. et al. Expression of endo-1. 4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme. BMC Biotechnol. 9, 56 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Saurin, A. J., Borden, K. L., Boddy, M. N. & Freemont, P. S. Does this have a familiar RING? Trends Biochem. Sci. 21, 208–214 (1996).

    CAS  Google Scholar 

  23. Lee, H. et al. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Gene. Dev. 15, 912–924 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de la Cruz, J., Kressler, D. & Linder, P. Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem. Sci. 24, 192–198 (1999).

    Article  PubMed  Google Scholar 

  25. Williams, G. J. & Thorson, J. S. Natural product glycosyltransferases: properties and applications. Adv. Enzymol. Relat. Areas Mol. Biol. 76, 55–119 (2009).

    CAS  PubMed  Google Scholar 

  26. Cross, T. G. et al. Serine/threonine protein kinases and apoptosis. Exp. Cel. Res. 256, 34–41 (2000).

    Article  CAS  Google Scholar 

  27. Ye, N. et al. Saccharina genomes provide novel insight into kelp biology. Nat. Commun. 6, 69–86 (2015).

    Google Scholar 

  28. Bold, H. C. & Wynne, M. J. Introduction to the Algae: Structure and Reproduction (Prentice-Hall, Englewood Cliffs, N. J., 1985).

    Google Scholar 

  29. Ahn, J. S. et al. Optimization of RNA purification method from Ecklonia cava Kjellman (Laminariales. Phaeophyceaa). Algae 19, 123–127 (2004).

    Article  Google Scholar 

  30. Conesa, A. et al. Blast2GO: a universal tool for annotation. visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungshic Yum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, Y.J., Oh, Y.S., Kim, M.Y. et al. Transcriptional responses in Ecklonia cava to short-term exposure to hyperthermal stress. Toxicol. Environ. Health Sci. 8, 181–188 (2016). https://doi.org/10.1007/s13530-016-0275-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-016-0275-z

Keywords

Navigation