Chlorin e6-mediated photodynamic inactivation with halogen light against microbes and fungus

Abstract

Photodynamic inactivation (PDI) is based on the utilization of a photosensitizer with light source and oxygen, producing reactive oxygen species which inactivate microbes and fungi. In this study, the antimicrobial effect of PDI using chlorin e6 (Ce6) and halogen light was investigated against several microbes and fungus with different properties. The PDI effects were tested against two gram-positive bacteria, S. aureus and B. subtilis, and one gram-negative bacterium E. coli. The acne-causing P. acnes, opportunistic oral and genital pathogen C. albicans and main contributor to tooth decay of S. mutans were also used for PDI test. Notably, Ce6-mediated PDI showed superior in vitro anti-pathogenic effects on P. acnes, S. mutans, and C. albicans in this study.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Dai, T., Huang, Y. Y. & Hamblin, M. R. Photodynamic therapy for localized infections—state of the art. Photodiagnosis Photodyn. Ther. 6, 170–188 (2009).

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  2. 2.

    Sharma, S. K. et al. Drug discovery of antimicrobial photosensitizers using animal models. Curr. Pharm. Des. 17, 1303–1319 (2011).

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  3. 3.

    Jeon, Y. M. et al. Antimicrobial photodynamic therapy using chlorin e6 with halogen light for acne bacteriainduced inflammation. Life Sci. 124, 56–63 (2015).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Chen, D. et al. Light-emitting diode based illumination system for in vitro photodynamic therapy. Int. J. Photoenergy 2012, 920671 (2012).

    Google Scholar 

  5. 5.

    Geraghty, P. & Kavanagh, K. Erythromycin, an inhibitor of mitoribosomal protein biosynthesis, alters the amphotericin B susceptibility of Candida albicans. J. Pharm. Pharmacol. 55, 179–184 (2003).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Maguire, B. A. Inhibition of bacterial ribosome assembly: a suitable drug target? Microbiol. Mol. Biol. Rev. 73, 22–35 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    Bukowski, M., Wladyka, B. & Dubin, G. Exfoliative toxins of Staphylococcus aureus. Toxins (Basel) 2, 1148–1165 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Emmert, E. A. B. & Handelsman, J. Biocontrol of plant disease: a Grampositive perspective. FEMS Microbiol. Lett. 171, 1–9 (1999).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Bais, H. P., Fall, R. & Vivanco, J. M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134, 307–319 (2004).

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  10. 10.

    Demidova, T. N. & Hamblin, M. R. Photodynamic inactivation of Bacillus spores, mediated by phenothiazinium dyes. Appl. Environ. Microbiol. 71, 6918–6925 (2005).

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  11. 11.

    Sperandio, F. F., Huang, Y. Y. & Hamblin, M. R. Antimicrobial photodynamic therapy to kill gram-negative bacteria. Recent Pat. Antiinfect. Drug Discov. 8, 108–120 (2013).

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  12. 12.

    Perry, A. L. & Lambert, P. A. Propionibacterium acnes. Lett. Appl. Microbiol. 42, 185–188 (2006).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Kjeldstad, B. Photoinactivation of Propionibacterium acnes by near-ultraviolet light. Z. Naturforsch. C. 39, 300–302 (1984).

    CAS  PubMed  Google Scholar 

  14. 14.

    Sigurdsson, V., Knulst, A. C. & van Weelden, H. Phototherapy of acne vulgaris with visible light. Dermatology 194, 256–260 (1997).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Hong, S. B. & Lee, M. H. Topical aminolevulinic acid-photodynamic therapy for the treatment of acne vulgaris. Photodermatol. Photoimmunol. Photomed. 21, 322–325 (2005).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Jahns, A. C. et al. An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: a case-control study. Br. J. Dermatol. 167, 50–58 (2012).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Achermann, Y., Goldstein, E. J., Coenye, T. & Shirtliff, M. E. Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin. Microbiol. Rev. 27, 419–440 (2014).

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  18. 18.

    Aubin, G. G., Portillo, M. E., Trampuz, A. & Corvec, S. Propionibacterium acnes, an emerging pathogen: from acne to implant-infections, from phylotype to resistance. Med. Mal. Infect. 44, 241–250 (2014).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Hamada, S. & Slade, H. D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev. 44, 331–384 (1980).

    PubMed Central  CAS  PubMed  Google Scholar 

  20. 20.

    Takahashi, N. & Nyvad, B. The role of bacteria in the caries process: Ecological perspectives. J. Dent. Res. 90, 294–303 (2011).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Burns, T., Wilson, M. & Pearson, G. J. Mechanism of lethal photosensitization of Streptococcus mutans. J. Dent. Res. 74, 859 (1995).

    Google Scholar 

  22. 22.

    Wood, S., Metcalf, D., Devine, D. & Robinson, C. Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J. Antimicrob. Chemother. 57, 680–684 (2006).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Achkar, J. M. & Fries, B. C. Candida infections of the genitourinary tract. Clin. Microbiol. Rev. 23, 253–273 (2010).

    PubMed Central  Article  PubMed  Google Scholar 

  24. 24.

    Scarsini, M. et al. Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections. Peptides. 71, 211–221 (2015).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Kumamoto, C. A. & Vinces, M. D. Alternative Candida albicans lifestyles: growth on surfaces. Annu. Rev. Microbiol. 59, 113–133 (2005).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Costa, A. C. et al. Susceptibility of Candida albicans and Candida dubliniensis to erythrosine- and LED-mediated photodynamic therapy. Arch. Oral Biol. 56, 1299–1305 (2011).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Dovigo, L. N. et al. Investigation of the photodynamic effects of curcumin against Candida albicans. Photochem. Photobiol. 87, 895–903 (2011).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Moon, Y. H. et al. Efficient preparation of highly pure chlorin e6 and its photodynamic anti-cancer activity in a rat tumor model. Oncol. Rep. 22, 1085–1091 (2009).

    CAS  PubMed  Google Scholar 

  29. 29.

    Al-Mariri, A. & Safi, M. The antibacterial activity of selected labiatae (Lamiaceae) essential oils against Brucella melitensis. Iran J. Med. Sci. 38, 44–50 (2013).

    PubMed Central  PubMed  Google Scholar 

  30. 30.

    Cos, P., Vlietinck, A. J., Berghe, D. V. & Maes, L. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 106, 290–302 (2006).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Han, S., Lee, K., Yeo, J., Baek, H. & Park, K. Antibacterial and anti-inflammatory effects of honeybee (Apis mellifera) venom against acne-inducing bacteria. J. Med. Plants Res. 4, 459–464 (2010).

    CAS  Google Scholar 

  32. 32.

    Al-Akl, N. S., Ismail, M., Khaliefeh, F., Usta, J. & Abdelnoor, A. M. Effects of catalase and 1400 W on the number of interleukin-4 and interferon-γ secreting spleen cells in mice injected with ovalbumin and alum. Immunopharmacol. Immunotoxicol. 34, 951–955 (2012).

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mi-Young Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryu, AR., Han, CS., Oh, HK. et al. Chlorin e6-mediated photodynamic inactivation with halogen light against microbes and fungus. Toxicol. Environ. Health Sci. 7, 231–238 (2015). https://doi.org/10.1007/s13530-015-0243-z

Download citation

Keywords

  • Chlorin e6
  • Halogen light
  • Photodynamic inactivation