Environmentally relevant levels of Bisphenol A may accelerate the development of type II diabetes mellitus in adolescent Otsuka Long Evans Tokushima Fatty rats

  • Yun-jung Yang
  • Sang-yon Kim
  • Yeon-pyo Hong
  • Jihyun Ahn
  • Moon-seo Park


Environmental chemicals may contribute to the development of obesity and metabolic disorders such as diabetes. Bisphenol A (BPA) is one of the environmental chemicals that are widely used in daily life. This study was performed to investigate whether low dose BPA exposure can influence the occurrence of type II diabetes mellitus. Four weeks old Otsuka Long Evans Tokushima Fatty (OLETF) rats were randomly assigned to three groups of five animals and each group was given different concentrations of corn oil with BPA (0, 0.001, and 0.1 mg/kg/day). BPA 0.1 mg/kg/ day produced impairment of glucose tolerance, and induced higher insulin (p=0.028) and malondialdehyde levels (p=0.009) in serum than control group. Serum insulin levels in BPA 0.001 mg/kg/day treated group showed significantly higher than the control group (p=0.016). BPA tended to induce down-regulation of PPARγ mRNA and protein expression in white adipose tissue than control. In conclusion, low dose BPA exposed OLETF rats in adolescent period could accelerate the development of diabetes mellitus in younger adult period.


Bisphenol A OLETF rats Type II diabetes mellitus Adolescent exposure Low dose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grun, F. & Blumberg, B. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 147, S50–55 (2006).PubMedCrossRefGoogle Scholar
  2. 2.
    Newbold, R. R. et al. Developmental exposure to diethylstilbestrol alters uterine gene expression that may be associated with uterine neoplasia later in life. Mol. Carcino. 46, 783–796 (2007).CrossRefGoogle Scholar
  3. 3.
    Baillie-Hamilton, P. F. Chemical toxins: a hypothesis to explain the global obesity epidemic. J. Altern. Complement. Med. 8, 185–192 (2002).PubMedCrossRefGoogle Scholar
  4. 4.
    Dahlman-Wright, K. et al. International union of pharmacology. LXIV. Estrogen receptors. Pharmacol. Rev. 58, 773–781 (2006).PubMedCrossRefGoogle Scholar
  5. 5.
    Shelby, M. D. NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. Ntp. Cerhr. Mon., v, vii–ix, 1-64 passim (2008).Google Scholar
  6. 6.
    Fernandez, M. F. et al. Bisphenol-A and chlorinated derivatives in adipose tissue of women. Reprod. Toxicol. 24, 259–264 (2007).PubMedCrossRefGoogle Scholar
  7. 7.
    Dekant, W. & Volkel, W. Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures. Toxicol. Appl. Pharmacol. 228, 114–134 (2008).PubMedCrossRefGoogle Scholar
  8. 8.
    Vandenberg, L. N. et al. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ. Health Perspect. 118, 1055–1070 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Carwile, J. L. & Michels, K. B. Urinary bisphenol A and obesity: NHANES 2003-2006. Environ. Res. 111, 825–830 (2011).PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Wang, T. et al. Urinary bisphenol A (BPA) concentration associates with obesity and insulin resistance. J. Clin. Endocrinol. Metab. 97, E223–227 (2012).PubMedCrossRefGoogle Scholar
  11. 11.
    Masuno, H., Iwanami, J., Kidani, T., Sakayama, K. & Honda, K. Bisphenol A accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol. Sci. 84, 319–327 (2005).PubMedCrossRefGoogle Scholar
  12. 12.
    Somm, E. et al. Perinatal exposure to bisphenol A alters early adipogenesis in the rat. Environ. Health Perspect. 117, 1549–1555 (2009).PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Miyawaki, J., Sakayama, K., Kato, H., Yamamoto, H. & Masuno, H. Perinatal and postnatal exposure to bisphenol A increases adipose tissue mass and serum cholesterol level in mice. J. Atheroscler. Thromb. 14, 245–252 (2007).PubMedCrossRefGoogle Scholar
  14. 14.
  15. 15.
    Honma, S. et al. Low dose effect of in utero exposure to bisphenol A and diethylstilbestrol on female mouse reproduction. Reprod. Toxicol. 16, 117–122 (2002).PubMedCrossRefGoogle Scholar
  16. 16.
    Alonso-Magdalena, P. et al. Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ. Health Perspect. 118, 1243–1250 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Roy, J. R., Chakraborty, S. & Chakraborty, T. R. Estrogen-like endocrine disrupting chemicals affecting puberty in humans-a review. Med. Sci. Monit. 15, RA137–145 (2009).PubMedGoogle Scholar
  18. 18.
    Lee, C. H., Olson, P. & Evans, R. M. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144, 2201–2207 (2003).PubMedCrossRefGoogle Scholar
  19. 19.
    Auwerx, J. PPARgamma, the ultimate thrifty gene. Diabetologia 42, 1033–1049 (1999).PubMedCrossRefGoogle Scholar
  20. 20.
    Janesick, A. & Blumberg, B. Minireview: PPARgamma as the target of obesogens. J. Steroid Biochem. Mol. Biol. 127, 4–8 (2011).PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Kawano, K. et al. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41, 1422–1428 (1992).PubMedCrossRefGoogle Scholar
  22. 22.
    Moran, T. H. & Bi, S. Hyperphagia and obesity in OLETF rats lacking CCK-1 receptors. Philos Trans. R. Soc. Lond. B Biol. Sci. 361, 1211–1218 (2006).PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Nakaya, Y. et al. Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous type 2 diabetes. Am. J. Clin. Nutr. 71, 54–58 (2000).PubMedGoogle Scholar
  24. 24.
    Choi, K. C. et al. Effect of PPAR-alpha and -gamma agonist on the expression of visfatin, adiponectin, and TNF-alpha in visceral fat of OLETF rats. Biochem. Biophys. Res. Commun. 336, 747–753 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    Nagai, N., Murao, T., Okamoto, N. & Ito, Y. Disulfiram reduces elevated blood glucose levels in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type 2 diabetes. J. Oleo Sci. 58, 485–490 (2009).PubMedCrossRefGoogle Scholar
  26. 26.
    Howdeshell, K. L., Hotchkiss, A. K., Thayer, K. A., Vandenbergh, J. G. & vom Saal, F. S. Exposure to bisphenol A advances puberty. Nature 401, 763–764 (1999).PubMedCrossRefGoogle Scholar
  27. 27.
    Masuno, H. et al. Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J. Lipid Res. 43, 676–684 (2002).PubMedGoogle Scholar
  28. 28.
    Nagel, S. C. et al. Relative binding affinity-serum modi-fied access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ. Health Perspect. 105, 70–76 (1997).PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Kabuto, H., Amakawa, M. & Shishibori, T. Exposure to bisphenol A during embryonic/fetal life and infancy increases oxidative injury and causes underdevelopment of the brain and testis in mice. Life Sci. 74, 2931–2940 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    Alonso-Magdalena, P., Morimoto, S., Ripoll, C., Fuentes, E. & Nadal, A. The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ. Health Perspect. 114, 106–112 (2006).PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Wei, J. et al. Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology 152, 3049–3061 (2011).PubMedCrossRefGoogle Scholar
  32. 32.
    Ding, S. et al. High-fat diet aggravates glucose homeostasis disorder caused by chronic exposure to bisphenol A. J. Endocrinol. 221, 167–179 (2014).PubMedCrossRefGoogle Scholar
  33. 33.
    Dodge, J. A. et al. Environmental estrogens: effects on cholesterol lowering and bone in the ovariectomized rat. J. Steroid Biochem. Mol. Biol. 59, 155–161 (1996).PubMedCrossRefGoogle Scholar
  34. 34.
    Seidlova-Wuttke, D., Jarry, H., Christoffel, J., Rimoldi, G. & Wuttke, W. Effects of bisphenol-A(BPA), dibutylphtalate (DBP), benzophenone-2 (BP2), procymidone (Proc), and linurone (Lin) on fat tissue, a variety of hormones and metabolic parameters: a 3 months comparison with effects of estradiol (E2) in ovariectomized (ovx) rats. Toxicology 213, 13–24 (2005).PubMedCrossRefGoogle Scholar
  35. 35.
    Ben-Jonathan, N., Hugo, E. R. & Brandebourg, T. D. Effects of bisphenol A on adipokine release from human adipose tissue: Implications for the metabolic syndrome. Mol. Cell. Endocrinol. 304, 49–54 (2009).PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Rosen, P. et al. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCOMCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab. Res. Rev. 17, 189–212 (2001).PubMedCrossRefGoogle Scholar
  37. 37.
    Bindhumol, V., Chitra, K. C. & Mathur, P. P. Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology 188, 117–124 (2003).PubMedCrossRefGoogle Scholar
  38. 38.
    Grun, F. et al. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol. Endocrinol. 20, 2141–2155 (2006).PubMedCrossRefGoogle Scholar
  39. 39.
    Chamorro-Garcia, R. et al. Bisphenol A diglycidyl ether induces adipogenic differentiation of multipotent stromal stem cells through a peroxisome proliferatoractivated receptor gamma-independent mechanism. Environ. Health Perspect. 120, 984–989 (2012).PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Kim, S. Y. The effects of low-dose exposure of di(2-ethylhexyl)phthalate, bisphenol A, bisphenol A diglycidyl ether on glucose metabolism and thyroid hormone in sprague-dawley rats and Otsuka Long-Everns Tokushima Fatty rats, Master’s degree thesis, Chung-Ang University (2010).Google Scholar

Copyright information

© Korean Society of Environmental Risk Assessment and Health Science and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yun-jung Yang
    • 1
    • 3
  • Sang-yon Kim
    • 1
  • Yeon-pyo Hong
    • 1
  • Jihyun Ahn
    • 2
  • Moon-seo Park
    • 3
  1. 1.Department of Preventive MedicineChung-Ang University, College of MedicineSeoulKorea
  2. 2.Department of Internal MedicineChung-Ang UniversityCollege of Medicine, SeoulKorea
  3. 3.Institute of Catholic Integrative Medicine, Incheon St. Mary’s HospitalThe Catholic University of Korea College of MedicineIncheonKorea

Personalised recommendations