Skip to main content
Log in

Amelioration of hydrofluoric acid-induced DNA damage by phytochemicals

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Hydrofluoric acid (HF), a solution of hydrogen fluoride in water, is widely used in producing refrigerants, drugs, plastics and aluminums. HF is not a strong acid, but it is a highly corrosive acid, capable of dissolving many materials. In this investigation, HF-induced oxidative DNA damage in lymphocytes was evaluated by comet assay. The ameliorative effect of phytochemicals on the HF-induced oxidative DNA damage was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carney, S. A., Hall, M., Lawrence, J. C. & Ricketts, C. R. Rationale of the treatment of hydrofluoric acid burns. Br. J. Ind. Med. 31, 317–321 (1974).

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Wong, A., Greene, S. & Robinson, J. Hydrofluoric acid poisoning: data from the victorian poisons information centre. Emerg. Med. Australas. 24, 98–101 (2012).

    Article  PubMed  Google Scholar 

  3. Burgher, F. et al. Experimental 70% hydrofluoric acid burns: histological observations in an established human skin explants ex vivo model. Cutan. Ocul. Toxicol. 30, 100–107 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Anderson, W. J. & Anderson, J. R. Hydrofluoric acid burns of the hand: mechanism of injury and treatment. J. Hand Surg. Am. 13, 52–57 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. MacKinnon, M. A. Hydrofluoric acid burns. Dermatol. Clin. 6, 67–74 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Kono, K. et al. An experimental study on the biochemical consequences of hydrofluoric acid burns. Bull. Osaka Med. Sch. 28, 124–133 (1982).

    CAS  PubMed  Google Scholar 

  7. Burke, W. J., Hoegg, U. R. & Phillips, R. E. Systemic fluoride poisoning resulting from a fluoride skin burn. J. Occup. Med. 15, 39–41 (1973).

    CAS  PubMed  Google Scholar 

  8. Seidel, C., Lautenschläger, C., Dunst, J. & Müller, A. C. Factors influencing heterogeneity of radiationinduced DNA-damage measured by the alkaline comet assay. Radiat. Oncol. 7, 61–71 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Vandghanooni, S. & Eskandani, M. Comet assay: a method to evaluate genotoxicity of nano-drug delivery system. BioImpacts 1, 87–97 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Widziewicz, K., Kalka, J., Skonieczna, M. & Madej, P. The comet assay for the evaluation of genotoxic potential of landfill leachate. Scientific World Journal 2012, 435239–435246 (2012).

    Article  PubMed  Google Scholar 

  11. Mozaffarieh, M. et al. Comet assay analysis of singlestranded DNA breaks in circulating leukocytes of glaucoma patients. Mol. Vis. 14, 1584–1588 (2008).

    CAS  PubMed  Google Scholar 

  12. Cortés-Gutiérrez, E. I. et al. Evaluation of DNA single and double strand breaks in women with cervical neoplasia based on alkaline and neutral comet assay techniques. J. Biomed. Biotechnol. 2012, 385245–385251 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  13. Dunn, B. J. et al. Hydrofluoric acid dermal burns. An assessment of treatment efficacy using an experimental pig model. J. Occup. Med. 34, 902–909 (1992).

    CAS  PubMed  Google Scholar 

  14. Dale, R. H. Treatment of hydrofluoric acid burns. Br. Med. J. 7, 728–732 (1951).

    Article  Google Scholar 

  15. Falluel-Morel, A. et al. N-acetyl cysteine (NAC) treatment reduces mercury-induced neurotoxicity in the developing rat hippocampus. J. Neurosci. Res. 90, 743–750 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chen, W., Ercal, N., Huynh, T., Volkov, A. & Chusuei, C. C. Characterizing N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA) binding for lead poisoning treatment. J. Colloid Interface Sci. 371, 144–149 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ponte, F. et al. Improvement of genetic stability in lymphocytes from fanconi anemia patients through the combined effects of a-lipoic acid and N-acetylcysteine. Orphanet J. Rare Dis. 7, 28–38 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sun, Z. et al. Intravenous N-acetylcysteine for prevention of contrast-induced nephropathy: a meta-analysis of randomized, controlled trials. PLoS One 8, e55124 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Nur, E. et al. N-acetylcysteine reduces oxidative stress in sickle cell patients. Ann. Hematol. 91, 1097–1105 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hardaway, C. M., Badisa, R. B. & Soliman, K. F. Effect of ascorbic acid and hydrogen peroxide on mouse neuroblastoma cells. Mol. Med. Rep. 5, 1449–1452 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Kumar, R. S., Narayanan, S. N. & Nayak, S. Ascorbic acid protects against restraint stress-induced memory deficts in wistar rats. Clinics (Sao Paulo) 64, 1211–1217 (2009).

    Article  Google Scholar 

  22. Ryu, A. R., Kim, J. J. & Lee, M. Y. The inhibitory effect of phytochemicals on the oxidative DNA damage in lymphocytes by chrysotile. J. Appl. Biol. Chem. 55, 179–184 (2012).

    Article  CAS  Google Scholar 

  23. Schachtele, S. J., Hu, S. & Lokensgard, J. R. Modulation of experimental herpes encephalitis-associated neurotoxicity through sulforaphane treatment. PLoS One. 7, e36216 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Csiszar, A. et al. Age-associated proinflammatory secretory phenotype in vascular smooth muscle cells from the non-human primate macaca mulatta: reversal by resveratrol treatment. J. Gerontol. A Biol. Sci. Med. Sci. 67, 811–820 (2012).

    Article  PubMed  Google Scholar 

  25. Murphy, C. J., Tang, H., Van Kirk, E. A., Shen, Y. & Murdoch, W. J. Reproductive effects of a pegylated curcumin. Reprod. Toxicol. 34, 120–124 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Nagajyothi, F., Zhao, D., Weiss, L. M. & Tanowitz, H. B. Curcumin treatment provides protection against trypanosoma cruzi infection. Parasitol. Res. 110, 2491–2499 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  27. Gupta, S. C., Patchva, S., Koh, W. & Aggarwal, B. B. Discovery of curcumin, a component of the golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol. 39, 283–299 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Nabavi, S. F., Moqhaddam, A. H., Eslami, S. & Nabavi, S. M. Protective effects of curcumin against sodium fluoride-induced toxicity in rat kidneys. Biol. Trace Elem. Res. 145, 369–374 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Guerrero-Beltrán, C. E. et al. Sulforaphane, a natural constituent of broccoli, prevents cell death and inflammation in nephropathy. J. Nutr. Biochem. 23, 494–500 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  30. Danilov, C. A. et al. Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation. Glia 57, 645–656 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  31. Greco, T., Shafer, J. & Fiskum, G. Sulforaphane inhibits mitochondria permeability transition and oxidative stress. Free Radic. Biol. Med. 51, 2164–2171 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Olive, P. L. & Banáth, J. P. The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1, 23–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Park, K. S. et al. Berberine inhibited the growth of thyroid cancer cell lines 8505C and TPC1. Yonsei Med. J. 53, 346–351 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Chen, X. W. et al. Interaction of herbal compounds with biological targets: a case study with berberine. Scientific World Journal 2012, 708292–708322 (2012).

    PubMed  Google Scholar 

  35. Mahata, S. et al. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol. Cancer 10, 39–52 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Young Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, EJ., Lee, MY. Amelioration of hydrofluoric acid-induced DNA damage by phytochemicals. Toxicol. Environ. Health Sci. 5, 201–206 (2013). https://doi.org/10.1007/s13530-013-0177-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-013-0177-2

Keywords

Navigation