Skip to main content
Log in

Effects of low frequency electrical stimulation on the change of male sex hormones in normal men

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

It is widely known that electrotherapy decreases the pain by mechanical and chemical stimulation. However, there have been no studies to find the change in the sex hormones by acupoint electrical stimulation for healthy rehabilitation. This study examines the effects that electrical stimulation of volunteers’ meridian points has on their levels of total testosterone, dehydroepiandrosterone sulfate (DHEA-S), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin, and other erectile dysfunction-related substances. A serum analysis showed that electrical stimulation using a 1 Hz current significantly increased the subjects’ concentrations of total testosterone and DHEA-S; however, there were no significant differences in the concentrations of FSH, LH, and prolactin in subjects treated with electrical stimulation. These results suggest that the increased responsiveness to electrical stimulation, particularly a current of 1 Hz continue type, may be partially related to an improvement in sexual functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pohl, H., DeRosa, C. & Holler, J. Public health assessment for dioxins exposure from soil. Chemosphere. 31, 2437–2454, 1995.

    Article  PubMed  CAS  Google Scholar 

  2. Grajewski, B. et al. Evaluation of reproductive function among men occupationally exposed to a stilbene derivative: I. Hormonal and physical status. Am. J. Ind. Med. 29, 49–57, 1996.

    Article  PubMed  CAS  Google Scholar 

  3. Freeman, K. Arsenic and erectile dysfunction: drinking contaminated well water increases risk. Environ. Health Perspect. 116, A172, 2008.

    Article  PubMed  Google Scholar 

  4. Egeland, G. M. et al. Total serum testosterone and gonadotropins in workers exposed to dioxin. Am. J. Epidemiol. 139, 272–281, 1994.

    PubMed  CAS  Google Scholar 

  5. Howell, S. & Shalet, S. Testosterone deficiency and replacement. Horm. Res. 56Suppl 1, 86–92, 2001.

    Article  PubMed  CAS  Google Scholar 

  6. Shabsigh, R. The effects of testosterone on the carverous tissue and erection. World J. Urol. 15, 21–26, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Yildrim, M. K. et al. Effects of castration on adrenergic, cholinergic and nonadrenergic, noncholinergic responses of isolated corpus cavernosum from rabbit. Br. J. Urol. 79, 964–970, 1997.

    Article  Google Scholar 

  8. Reilly, C. M., Stopper, V. S. & Mills, T. M. Androgens modulate the α-adrenergic responsiveness of vascular smooth muscle in the corpus carvernosum. J. Androl. 18, 26–31, 1997.

    PubMed  CAS  Google Scholar 

  9. Palese, M. A., Crone, J. K. & Burnett, A. L. A castrated mouse model of erectile dysfunction. J. Androl. 24, 699–703, 2003.

    PubMed  Google Scholar 

  10. Korenman, S. G. Clinical review 71: Advances in the understanding and management of erectile dysfunction. J. Clin. Endocrinol. Metab. 80, 1985–1988, 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Spark, R. F., White, R. A. & Connolly, P. B. Impotence is not always psychogenic. Newer insights into hypothalamic-pituitary-gonadal dysfunction. JAMA. 243, 750–755, 1980.

    Article  PubMed  CAS  Google Scholar 

  12. Maatman, T. J. & Montague, D. K. Routine endocrine screening in impotence. Urology 27, 499–502, 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Zietz, B. et al. Association of increased C-peptide serum levels and testosterone in type 2 diabetes. Eur. J. Intern. Med. 11, 322–328, 2000.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, X. H. et al. Testosterone restores diabetes-induced erectile dysfunction and sildenafil responsiveness in two distinct animal models of chemical diabetes. J. Sex Med. 3, 253–264, 2006.

    Article  PubMed  CAS  Google Scholar 

  15. Ebeling, P. & Koivisto, V. A. Physiological importance of dehydroepiandrosterone. Lancet 343, 1479–1481, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Reiter, W. J. et al. Serum dehydroepiandrosterone sulfate concentrations in men with erectile dysfunction. Urology 55, 755–758, 2000.

    Article  PubMed  CAS  Google Scholar 

  17. Hall, R. C. & Hall, R. C. Abuse of supraphysiologic doses of anabolic steroids. South Med. J. 98, 550–555, 2005.

    Article  PubMed  Google Scholar 

  18. Anis, T. H. et al. Chronic lead exposure may be associated with erectile dysfunction. J. Sex Med. 4, 1428–1434, 2007.

    Article  PubMed  CAS  Google Scholar 

  19. Li, D. K. et al. Relationship between urine bisphenol-A level and declining male sexual function. J. Androl. 31, 500–506, 2010.

    Article  PubMed  CAS  Google Scholar 

  20. Schover, L. R. & von Eschenbach, A. C. Sexual and marital relationships after treatment for nonseminomatous testicular cancer. Urology 25, 251–255, 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Mehik, A. et al. Fears, sexual disturbances and personality features in men with prostatitis: a population-based cross-sectional study in Finland. BJU. Int. 88, 35–38, 2001.

    Article  PubMed  CAS  Google Scholar 

  22. Buvat, J. & Lemaire, A. Endocrine screening in 1,022 men with erectile dysfunction: clinical significance and cost-effective strategy. J. Urol. 158, 1764–1767, 1997.

    Article  PubMed  CAS  Google Scholar 

  23. Wanachiwanawin, W. et al. Prevalence and clinical significance of hepatitis C virus infection in Thai patients with thalassemia. Int. J. Hematol. 78, 374–378, 2003.

    Article  PubMed  Google Scholar 

  24. Cai, S. X. et al. Subjective symptom increase among dry-cleaning workers exposed to tetrachloroethylene vapor. Ind. Health. 29, 111–121, 1991.

    Article  PubMed  CAS  Google Scholar 

  25. Carey, P. O., Howards, S. S. & Vance, M. L. Transdermal testosterone treatment of hypogonadal men. J. Urol. 140, 76–79, 1988.

    PubMed  CAS  Google Scholar 

  26. Arver, S. et al. Improvement of sexual function in testosterone deficient men treated for 1 year with a permeation enhanced testosterone transdermal system. J. Urol. 155, 1604–1608, 1996.

    Article  PubMed  CAS  Google Scholar 

  27. Zheng, X. F. & Li, P. Study on effects of acupuncture combined with medication on reproductive endocrines in the patient of PADAM. Zhongguo. Zhen. Jiu. 27, 333–335, 2007

    CAS  Google Scholar 

  28. El-Sakka, A. I., Sayed, H. M. & Tayeb, K. A. Androgen pattern in patients with type 2 diabetes-associated erectile dysfunction: impact of metabolic control. Urology 74, 552–559, 2009.

    Article  PubMed  Google Scholar 

  29. Tsujita, M. & Ichikawa, Y. Substrate-binding region of cytochrome P-450SCC (P-450 XIA1). Identification and primary structure of the cholesterol binding region in cytochrome P-450SCC. Biochim. Biophys. Acta. 1161, 124–130, 1993.

    Article  PubMed  CAS  Google Scholar 

  30. Liu, W. H. & Lo, C. K. Production of testosterone from cholesterol using a single-step microbial transformation of Mycobacterium sp. J. Ind. Microbiol. Biotechnol. 19, 269–272, 1997.

    Article  PubMed  CAS  Google Scholar 

  31. Snyder, P. J. & Lawrence, D. A. Treatment of male hypogonadism with testosterone enanthate. J. Clin. Endocrinol. Metab. 51, 1335–1339, 1980.

    Article  PubMed  CAS  Google Scholar 

  32. Leonard, M. P., Nickel, C. J. & Morales, A. Hyperprolactinemia and impotence: why, when and how to investigate. J. Urol. 142, 992–994, 1989.

    PubMed  CAS  Google Scholar 

  33. Clayton, R. N. Mechanism of GnRH action in gonadotrophs. Hum. Reprod. 3, 479–483, 1988.

    PubMed  CAS  Google Scholar 

  34. Lambert, A., Talbot, J. A., Anobile, C. J. & Robertson, W. R. Gonadotrophin heterogeneity and biopotency: implications for assisted reproduction. Mol. Hum. Reprod. 4, 619–629, 1998.

    Article  PubMed  CAS  Google Scholar 

  35. Richards, J. S. et al. Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog. Horm. Res. 57, 195–220, 2002.

    Article  PubMed  CAS  Google Scholar 

  36. Kim, J. H. et al. Noxiousness of hypertension-related norepinephrine and upregulation of norepinephrine induced by high intensity electrical stimulation in healthy volunteers. J. Phys. Ther. Sci. 24, 795–800, 2012.

    Article  Google Scholar 

  37. Urban, R. J. et al. Specific regulatory actions of dihydrotestosterone and estradiol on the dynamics of FSH secretion and clearance in humans. J. Androl. 12, 27–35, 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junghwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J. Effects of low frequency electrical stimulation on the change of male sex hormones in normal men. Toxicol. Environ. Health Sci. 5, 20–25 (2013). https://doi.org/10.1007/s13530-013-0151-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-013-0151-z

Key words

Navigation