Toxicity of single and combined herbicides on PSII maximum efficiency of an aquatic higher plant, Lemna sp.

Abstract

The present study examined the effect of single and binary mixtures of four herbicides, namely, atrazine, diuron, simazine and hexazinone on the maximum quantum efficiency of photosynthesis (Fv/Fm) of Lemna sp. after 96 h of exposure. When applied singly, the toxicity ranking of the four herbicides was as follows: diuron>hexazinone>atrazine>simazine. Binary combinations of these toxicants revealed varying inhibition values; for example, the combination of low diuron concentration with both high and low concentrations of hexazinone resulted in a synergistic effect, with mean ratio of inhibition (RI) values ranging from 1.13±0.10 to 1.16±0.08. The combination of diuron with atrazine revealed an additive effect at low diuron levels (0.025 mg L−1) and high atrazine levels (0.1 mg L−1) with an RI value of 1.06±0.07. Our study emphasizes on the utility of combined toxicity models in predicting the toxicological impact of herbicide mixtures on aquatic ecosystems. Overall, this study provides valuable information on the chlorophyll fluorescence of Lemna sp. as a bioanalytical tool for the rapid and inexpensive assessment of photosystem II (PSII) inhibiting herbicide mixtures.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Frankart, C., Eullaffroy, P. & Vernet, G. Comparative effects of four herbicides on non-photochemical fluorescence quenching in Lemna minor. Environ. Exp. Bot. 49, 159–168 (2003).

    Article  CAS  Google Scholar 

  2. 2.

    Knauert, S., Escher, B., Singer, H., Hollender, J. & Knauer, K. Mixture of three photosystem II inhibitors (atrazine, isoproturon and diuron) toward photosynthesis of freshwater phytoplankton studies in outdoor mesocosms. Environ. Sci. Technol. 42, 6424–6430 (2008).

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Cedergreen, N., Spliid, N. H. & Streibig, J. C. Speciesspecific sensitivity of aquatic macrophytes towards two herbicides. Ecotoxicol. Environ. Saf. 58, 314–323 (2004).

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Bussan, A. J. & Dyer, W. E. Herbicides and rangeland. In Sheley, R. L. & Petroff, J. K. eds Biology and Management of Noxious Rangeland Weeds Oregon State University Press, Corvallis, OR, 116–132 (1999).

    Google Scholar 

  5. 5.

    Kish, P. A. Evaluation of herbicide impact on periphyton community structure using the Matlock periphytometer. J. Freshwat. Ecol. 21, 341–348 (2006).

    Article  CAS  Google Scholar 

  6. 6.

    Seguin, F., Druart, J. C. & Le Cohu, R. Effects of atrazine and nicosulfuron on periphytic diatom communities in freshwater outdoor lentic mesocosms. Ann. Limnol. 37, 3–8 (2001).

    Article  Google Scholar 

  7. 7.

    Thompson, D. G., Holmes, S. B., Wainiokeizer, K., Macdonald, L. & Solomon, K. R. Impact of hexazinone and metsulfuron methyl on the zooplankton community of a boreal forest lake. Environ. Toxicol. Chem. 12, 1709–1717 (1993).

    Article  CAS  Google Scholar 

  8. 8.

    Relyea, R. A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 15, 618–627 (2005).

    Article  Google Scholar 

  9. 9.

    Haroun, S. A. Influence of site of oxyfluorfen application on growth, pigments, photosynthesis and yield attributes of Glycine max plants. Pakistan J. Biol. Sci. 5(3), 292–296 (2002).

    Article  Google Scholar 

  10. 10.

    Suresh Kumar, K. & Han, T. Physiological response of Lemna species to herbicides and its probable use in toxicity testing. Toxicol. Environ. Health. Sci. 2, 39–49 (2010).

    Article  Google Scholar 

  11. 11.

    Eullaffroy, P., Frankart, C., Aziz, A., Couderchet, M. & Blaise, C. Energy fluxes and driving forces for photosynthesis in Lemna minor exposed to herbicides. Aquat. Bot. 90, 172–178 (2009).

    Article  CAS  Google Scholar 

  12. 12.

    Muller, R. et al. Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay. Sci. Total. Env. 401, 51–59 (2008).

    Article  CAS  Google Scholar 

  13. 13.

    Hernando, M. D., Ejerhoon, M., Ferandez-Alba, A. R. & Chisti, Y. Combined toxicity effects of MTBE and pesticide measured with Vibrio fischeri and Daphnia magna bioassays. Wat. Res. 37, 4091–4098 (2003).

    Article  CAS  Google Scholar 

  14. 14.

    Hartgers, E. M. et al. Ecotoxicological threshold levels of a mixture of herbicides (atrazine, diuron and metolachlor) in fresh water microcosms. Aquat. Ecol. 32, 135–152 (1998).

    Article  CAS  Google Scholar 

  15. 15.

    Papageorgiou, G. C. & Govindjee. Chlorophyll a fluorescence - a signature of photosynthesis. In Govindjee, eds, Advances in Photosynthesis and Respiration (Vol 19, Springer, Dordrecht, The Netherlands, 818, 2007).

    Google Scholar 

  16. 16.

    Schreiber, U. Pulse-amplitude (PAM) fluorometry and saturation pulse method. In Papageorgiou G, Govindjee, eds, Chlorophyll fluorescence: A signature of Photosynthesis (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004).

    Google Scholar 

  17. 17.

    Krause, G. H. & Weis, E. Chlorophyll fluorescence and photosynthesis: the basics. Ann. Rev. Plant. Physiol. Plant. Mol. Biol. 42, 313–349 (1991).

    Article  CAS  Google Scholar 

  18. 18.

    Brain, R. S. & Solomon, K. R. A protocol for conducting 7-day daily renewal tests with Lemna gibba. Nat. Protoc. 2, 979–987 (2007).

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Claudia, S., Simon, M., Spranger, J. & Baumgartner, S. Test system stability and natural variability of a Lemna gibba L. Bioassay PLoS ONE 3 (2008) e3133. doi: 10.1371/journal.pone.0003133.

  20. 20.

    Cedergreen, N., Kudsk, P., Mathiassen, S. K. & Streibig, J. C. Combination effects of herbicides on plants and algae: do species and test systems matter? Pest Manag. Sci. 63, 282–295 (2007a).

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Marwood, C. A., Solomon, K. R. & Bruce, M. G. Chlorophyll fluorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem. 20, 890–898 (2001).

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Gisi, U. Synergistic interaction of fungicides in mixtures. Phytopathology 86, 1273–1279 (1996).

    CAS  Google Scholar 

  23. 23.

    Teisseire, H., Couderchet, M., Vernet, G. Phytotoxicity of diuron alone and in combination with copper or folpet on duckweed (Lemna minor). Environ. Pollut. 106, 39–45 (1999).

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Gatidou, G. & Thomaidis, N. S. Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays. Aquat. Toxicol. 85, 184–191 (2007).

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Macedo, R. S., Lombardi, A. T., Omachi, C. Y. & Rorig, L. R. Effects of the herbicide bentazon on growth and photosystem II maximum quantum yield of the marine diatom Skeletonema costatum. Toxicol. in Vitro. 22, 716–722 (2008).

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Chesworth, J. C., Donkin, M. E. & Brown, M. T. The interactive effects of the antifouling herbicides Irgarol 1051 and Diruon on the seagrass Zostera marina (L.). Aquat. Toxicol. 66, 293–305 (2004).

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Jones, R. J. & Kerswell, A. P. Phytotoxicity of Photosystem II (PSII) herbicides to coral. Mar. Ecol. Prog. Ser. 261, 149–159 (2003).

    Article  CAS  Google Scholar 

  28. 28.

    Fairchild, J. F., Ruessler, D. S., Haverland, P. S. & Carlson, A. R. Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides. Arch. Environ. Contam. Toxicol. 32, 353–357 (1997).

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Gausman, M. A. A comparison of duckweed and standard algal phytotoxicity tests as indicators of aquatic toxicology (A practicum submitted to Miami University). Miami University, Oxford, Ohio (2006).

    Google Scholar 

  30. 30.

    Solomon, K. R. et al. Ecological risk assessment of atrazine in North American surface waters. Environ. Toxicol. Chem. 15, 31–76 (1996).

    Article  CAS  Google Scholar 

  31. 31.

    US EPA OPP Aquatic Life Benchmark. http://www.epa.gov/oppefed1/ecorisk_ders/aquatic_life_benchmark.htm#use (2007).

  32. 32.

    Knauer, K., Sobek, A. & Bucheli, T. D. Reduced toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata in the presence of black carbon. Aquat. Toxicol. 83, 143–148 (2007).

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Peterson, H. G., Boutin, S., Freemark, K. E. & Martin, P. A. Toxicity of hexazinone and diquat to green algae, diatoms, cyanobacteria and duckweed. Aqua. Toxicol. 39, 111–134 (1997).

    Article  CAS  Google Scholar 

  34. 34.

    Merlina, G., Eulaffroy, P. & Blake, G. Use of fluorescence induction kinetics of Lemna minor as a tool for chemical stress evaluation. Sci. Tot. Environ. 134, 761–772 (1993).

    Article  Google Scholar 

  35. 35.

    Environment Canada. Guidance Document on Control Toxicity Test Precision using Reference Toxicants. (Environmental Protection Series. Gatineau, Canada: Environment Canada 1990).

    Google Scholar 

  36. 36.

    ASTM E1415 - 91Standard guide for conducting static toxicity tests with Lemna gibba G3. http://www.astm.org/Standards/E1415.htm (2004).

  37. 37.

    ISO 20079:2005 Water quality-Determination of the toxic effect of water constituents and waste water on duckweed (Lemna minor) — Duckweed growth inhibition test. www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_ detail.htm? csnumber= 34074.

  38. 38.

    OECD Guidelines for the testing of chemicals. Lemna sp. Growth Inhibition Test. www.oecd.org/dataoecd/ 16/51/1948054.pdf.

  39. 39.

    US EPA Biological test method: Test for measuring the inhibition of growth using the freshwater macrophyte Lemna minor. Environmental Protection Series EPS 1/ RM/37/ Second Edition January 2007. http://www.etc-cte.ec.gc.ca/organization/bmd/pubs/pubs_en/RM372nded-Lemnaenglish Highlighted.pdf.

  40. 40.

    Faust, M., Altenburger, R., Boedeker, W. & Grimme, L. H. Additive effects of herbicide combinations on aquatic non-target organisms. Sci. Tot. Env.-Suppl. 134, 941–952 (1993).

    Article  Google Scholar 

  41. 41.

    Walker, C. H., Hopkin, S. P., Sibly, R. M. & Peakall, D. B. Principles of Ecotoxicology. (2nd ed, Taylor and Francis, London (ISBN 0-8493-3635-X) 2001).

    Google Scholar 

  42. 42.

    Jansen, M. A. K., Mattoo, A. K., Malkin, S. & Edelman, M. Direct demonstration of binding-site competition between photosystem II inhibitors at the QB niche of the D1 protein. Pestic. Biochem. Physiol. 46, 78–83 (1993).

    Article  CAS  Google Scholar 

  43. 43.

    Knauert, S., Singer, H., Hollender, J. & Knauer, K. Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms. Environ. Pollut. 158, 167–174 (2010).

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Faust, M. et al. Predicting the joint algal toxicity of multi-component s-triazine mixture at low-effect concentrations of individual toxicants. Aquat. Toxicol. 56, 13–32 (2001).

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Drost, W., Backhaus, T., Vassilakaki, M., Grimme, L. H. Mixture toxicity of s-triazines to Lemna minor under conditions of simultaneous and sequential exposure. Fresenius. Environ. Bull. 12, 601–607 (2003).

    CAS  Google Scholar 

  46. 46.

    Backhaus, T. et al. Joint algal toxicity of phenylurea herbicides is equally predictable by concentration addition and independent action. Environ. Toxicol. Chem. 23, 258–264 (2004).

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Cedergreen, N., Abbaspoor, M., Sørensen, H. & Streibig, J. C. Is mixture toxicity measured on a biomarker indicative of what happens on a population level? A study with Lemna minor. Ecotoxicol. Environ. Saf. 67, 323–332 (2007b).

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Arrhenius, A., Gronvall, F., Scholze, M., Backhaus, T. & Blanck, H. Predictability of the mixture toxicity of 12 similarly acting congeneric inhibitors of photosystem II in marine periphyton and epipsammon communities. Aquat. Toxicol. 68, 351–367 (2004).

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Chévre, N. et al. Including mixtures in the determination of water quality criteria for herbicides in surface water. Environ. Sci. Technol. 40, 426–435 (2006).

    PubMed  Article  Google Scholar 

  50. 50.

    Anderson, P. D. & Weber, L. J. The toxicity to aquatic population of mixtures containing certain heavy metals. In Proceedings of the International Conference on Heavy metals in the Environment, Institute of Environmental Studies, University of Toronto, 933–953 (1975).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Taejun Han.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suresh Kumar, K., Han, T. Toxicity of single and combined herbicides on PSII maximum efficiency of an aquatic higher plant, Lemna sp.. Toxicol. Environ. Health Sci. 3, 97–105 (2011). https://doi.org/10.1007/s13530-011-0084-3

Download citation

Keywords

  • Chlorophyll a fluorescence
  • Fv/Fm
  • Herbicides
  • I-PAM
  • Lemna sp.
  • Photosynthesis
  • Toxicity