Skip to main content
Log in

Separating the Signal From the Noise: Evidence for Deceleration in Old-Age Death Rates

  • Published:
Demography

Abstract

Widespread population aging has made it critical to understand death rates at old ages. However, studying mortality at old ages is challenging because the data are sparse: numbers of survivors and deaths get smaller and smaller with age. I show how to address this challenge by using principled model selection techniques to empirically evaluate theoretical mortality models. I test nine models of old-age death rates by fitting them to 360 high-quality data sets on cohort mortality after age 80. Models that allow for the possibility of decelerating death rates tend to fit better than models that assume exponentially increasing death rates. No single model is capable of universally explaining observed old-age mortality patterns, but the log-quadratic model most consistently predicts well. Patterns of model fit differ by country and sex. I discuss possible mechanisms, including sample size, period effects, and regional or cultural factors that may be important keys to understanding patterns of old-age mortality. I introduce mortfit, a freely available R package that enables researchers to extend the analysis to other models, age ranges, and data sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In this article, I use the terms “advanced ages” and “oldest ages” to refer to ages over 80.

  2. Although my focus is on old-age mortality, these models can also be applied to other age ranges.

  3. Jdanov et al. (2008) developed methods to quantify several different ways that age patterns of deaths and population counts can be irregular. The researchers then systematically applied their methods to each cohort in the K-T database, producing comparable indicators for data quality across cohorts. Finally, they summarized their results using hierarchical clustering, producing four tiers of data quality: best, acceptable, conditionally acceptable, and weak.

  4. I also use several R packages, including Daróczi and Tsegelskyi (2015), R Core Team (2014), Wickham (2009), Slowikowski and Irisson (2016), Schloerke et al. (2014), and Wickham et al. (2016).

  5. The distance metric used in Fig. A5 in the online appendix is group average difference in ΔAIC values. Hastie et al. (2009) has more details on hierarchical clustering.

  6. The figure omits the Weibull model, which consistently fit poorly across all countries (Fig. 4).

  7. Section C in the online appendix shows that this conclusion is robust to the choice of AIC, BIC, or cross-validation as the principled model fit technique.

  8. This finding that France and Italy do not fit Gompertzian old-age mortality patterns is confirmed even when other methods of assessing model fit, based on different statistical theories, are considered (online appendix, section C).

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  • Barbi, E., Lagona, F., Marsili, M., Vaupel, J. W., Wachter, K. W. (2018). The plateau of human mortality: Demography of longevity pioneers. Science, 360, 1459–1461.

  • Beard, R. E. (1959). Appendix: Note on some mathematical mortality models. In G. E. W. Wolstenholme & M. O’Conner (Eds.), The lifespan of animals: Ciba Foundation Colloquium on Ageing (Vol. 5, pp. 302–311). Boston, MA: Brown Little.

    Google Scholar 

  • Beard, R. E. (1971). Some aspects of theories of mortality, cause of death analysis, forecasting and stochastic processes. In W. Brass (Ed.), Biological aspects of demography: Symposia of the Society for the Study of Human Biology (Vol. 10, pp. 57–68). Oxford, UK: Taylor & Francis.

  • Bebbington, M., Green, R., Lai, C.-D., & Zitikis, R. (2014). Beyond the Gompertz law: Exploring the late-life mortality deceleration phenomenon. Scandinavian Actuarial Journal, 2014, 189–207.

    Article  Google Scholar 

  • Berkman, L. F., & Syme, S. L. (1979). Social networks, host resistance, and mortality: A nine-year follow-up study of Alameda County residents. American Journal of Epidemiology, 109, 186–204.

    Article  Google Scholar 

  • Black, D. A., Hsu, Y.-C., Sanders, S. G., Schofield, L. S., & Taylor, L. J. (2017). The Methuselah effect: The pernicious impact of unreported deaths on old age mortality estimates (NBER Working Paper No. 23574). Cambridge, MA: National Bureau of Economic Research.

  • Bongaarts, J. (2005). Long-range trends in adult mortality: Models and projection methods. Demography, 42, 23–49.

    Article  Google Scholar 

  • Burnham, K. P., & Anderson, D. (2003). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). New York, NY: Springer-Verlag.

    Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods & Research, 33, 261–304.

    Article  Google Scholar 

  • Byberg, L., Melhus, H., Gedeborg, R., Sundström, J., Ahlbom, A., Zethelius, B.,... Michaëlsson, K. (2009). Total mortality after changes in leisure time physical activity in 50 year old men: 35 year follow-up of population based cohort. BMJ, 338, b688. https://doi.org/10.1136/bmj.b688

    Article  Google Scholar 

  • Chiang, C. L. (1960). A stochastic study of the life table and its applications: I. Probability distributions of the biometric functions. Biometrics, 16, 618–635.

    Article  Google Scholar 

  • Claeskens, G., & Hjort, N. L. (2008). Model selection and model averaging (Vol. 330). Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Coale, A. J., & Kisker, E. E. (1990). Defects in data on old-age mortality in the United States: New procedures for calculating mortality schedules and life tables at the highest ages. Asian & Pacific Population Forum, 4(1), 1–31. Retrieved from http://hdl.handle.net/10125/3598

  • Daróczi, G., & Tsegelskyi, R. (2015). Pander: An R pandoc writer [R package version 0.6.0]. Retrieved from https://cran.mtu.edu/web/packages/pander/index.html

  • Dong, X., Milholland, B., & Vijg, J. (2016). Evidence for a limit to human lifespan. Nature, 538, 257–259.

    Article  Google Scholar 

  • Gavrilov, L. A., & Gavrilova, N. S. (1991). The biology of life span: A quantitative approach. Chur, Switzerland: Harwood Academic Publishers.

    Google Scholar 

  • Gavrilov, L. A., & Gavrilova, N. S. (2011). Mortality measurement at advanced ages: A study of the Social Security Administration Death Master File. North American Actuarial Journal, 15, 432–447.

    Article  Google Scholar 

  • Gavrilova, N. S., & Gavrilov, L. A. (2015). Biodemography of old-age mortality in humans and rodents. Journals of Gerontology, Series A: Biological Sciences & Medical Sciences, 70, 1–9.

  • Gerland, P., Raftery, A. E., Ševčíková, H., Li, N., Gu, D., Spoorenberg, T.,... Wilmoth, J. (2014). World population stabilization unlikely this century. Science, 346, 234–237.

    Article  Google Scholar 

  • Gjonca, A., Maier, H., & Brockmann, H. (2000). Old-age mortality in Germany prior to and after reunification. Demographic Research, 3(article 1). https://doi.org/10.4054/DemRes.2000.3.1

  • Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London, 115, 513–583.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (Springer Series in Statistics, 2nd ed.). New York, NY: Springer.

    Book  Google Scholar 

  • Haveman-Nies, A., de Groot, L. C., & van Staveren, A. W. (2003). Dietary quality, lifestyle factors and healthy ageing in Europe: The SENECA study. Age and Ageing, 32, 427–434.

    Article  Google Scholar 

  • Himes, C., Preston, S., & Condran, G. (1994). A relational model of mortality at older ages in low mortality countries. Population Studies, 48, 269–291.

    Article  Google Scholar 

  • Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: A tutorial. Statistical Science, 14, 382–401.

    Article  Google Scholar 

  • Horiuchi, S., & Wilmoth, J. R. (1998). Deceleration in the age pattern of mortality at older ages. Demography, 35, 391–412.

    Article  Google Scholar 

  • Jdanov, D. A., Jasilionis, D., Soroko, E. L., Rau, R., & Vaupel, J. W. (2008). Beyond the Kannisto-Thatcher database on old-age mortality: An assessment of data quality at advanced ages (MPIDR Working Paper No. WP-2008-013). Rostock, Germany: Max Planck Institute for Demographic Research.

  • Kannisto, V., Lauritsen, J., Thatcher, A. R., & Vaupel, J. W. (1994). Reductions in mortality at advanced ages: Several decades of evidence from 27 countries. Population and Development Review, 20, 793–810.

    Article  Google Scholar 

  • Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.

    Article  Google Scholar 

  • Kinsella, K., & Phillips, D. R. (2005). Global aging: The challenge of success (Population Bulletin, Vol. 60 No. 1). Washington, DC: Population Reference Bureau. Retrieved from https://assets.prb.org//pdf05/60.1GlobalAging.pdf

  • Lenart, A., & Vaupel, J. W. (2017). Questionable evidence for a limit to human lifespan. Nature, 546, E13–E14. https://doi.org/10.1038/nature22790

    Article  Google Scholar 

  • Li, J. S. H., Ng, A. C. Y., & Chan, W. S. (2011). Modeling old-age mortality risk for the populations of Australia and New Zealand: An extreme value approach. Mathematics and Computers in Simulation, 81, 1325–1333.

    Article  Google Scholar 

  • Luy, M., Wegner, C., & Lutz, W. (2011). Adult mortality in Europe. In R. G. Rogers & E. M. Crimmins (Eds.), International handbook of adult mortality (pp. 49–81). New York, NY: Springer.

    Chapter  Google Scholar 

  • Lynch, S. M., & Brown, J. S. (2001). Reconsidering mortality compression and deceleration: An alternative model of mortality rates. Demography, 38, 79–95.

    Article  Google Scholar 

  • Lynch, S. M., Brown, J. S., & Harmsen, K. G. (2003). Black-white differences in mortality compression and deceleration and the mortality crossover reconsidered. Research on Aging, 25, 456–483.

    Article  Google Scholar 

  • Makeham, W. M. (1860). On the law of mortality and the construction of annuity tables. Assurance Magazine, and Journal of the Institute of Actuaries, 8, 301–310.

    Article  Google Scholar 

  • Manton, K. G., Stallard, E., & Vaupel, J. W. (1981). Methods for comparing the mortality experience of heterogeneous populations. Demography, 18, 389–410.

    Article  Google Scholar 

  • Martin, L., & Preston, S. (Eds.). (1994). Demography of aging. Washington, DC: National Academies Press.

    Google Scholar 

  • Max Planck Institute for Demographic Research (MPIDR). (2014). Kannisto-Thatcher database on old-age mortality [Database]. Rostock, Germany: MPIDR. http://www.demogr.mpg.de/databases/ktdb/introduction.htm

  • Meslé, F., & Vallin, J. (2006). Diverging trends in female old-age mortality: The United States and the Netherlands versus France and Japan. Population and Development Review, 32, 123–145.

    Article  Google Scholar 

  • Olshansky, S. J., & Carnes, B. A. (1997). Ever since Gompertz. Demography, 34 , 1–15.

    Article  Google Scholar 

  • Ouellette, N. (2016). La forme de la courbe de mortalité des centenaires canadiens-français [The shape of the mortality curve of Canadian-French centenarians]. Gérontologie et Société, 38(3), 41–53.

    Article  Google Scholar 

  • Perks, W. (1932). On some experiments in the graduation of mortality statistics. Journal of the Institute of Actuaries, 63, 12–57.

    Article  Google Scholar 

  • Pletcher, S. D. (1999). Model fitting and hypothesis testing for age-specific mortality data. Journal of Evolutionary Biology, 12, 430–439.

    Article  Google Scholar 

  • Promislow, D. E. L., Tatar, M., Pletcher, S., & Carey, J. R. (1999). Below-threshold mortality: Implications for studies in evolution, ecology and demography. Journal of Evolutionary Biology, 12, 314–328.

    Article  Google Scholar 

  • R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/

  • Rau, R., Soroko, E., Jasilionis, D., & Vaupel, J. W. (2008). Continued reductions in mortality at advanced ages. Population and Development Review, 34, 747–768.

    Article  Google Scholar 

  • Schloerke, B., Crowley, J., Cook, D., Hofmann, H., Wickham, H., Briatte, F.,...Thoen, E. (2014). GGally: Extension to ggplot2 [R package version 0.5. 0]. Retrieved from https://libraries.io/cran/GGally/0.5.0

  • Sheshinski, E. (2007). The economic theory of annuities. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Slowikowski, K., & Irisson, J.-O. (2016). Ggrepel: Repulsive text and label geoms for “ggplot2.” [R package version 0.6. 5]. Retrieved from https://github.com/slowkow/ggrepel

  • Staetsky, L. (2009). Diverging trends in female old-age mortality: A reappraisal. Demographic Research, 21(article 30), 885–914. https://doi.org/10.4054/DemRes.2009.21.30

    Article  Google Scholar 

  • Steinsaltz, D. (2005). Re-evaluating a test of the heterogeneity explanation for mortality plateaus. Experimental Gerontology, 40, 101–113.

    Article  Google Scholar 

  • Steinsaltz, D., & Wachter, K. (2006). Understanding mortality rate deceleration and heterogeneity. Mathematical Population Studies, 13, 19–37.

    Article  Google Scholar 

  • Strehler, B. L., & Mildvan, A. S. (1960). General theory of mortality and aging. Science, 132, 14–21.

    Article  Google Scholar 

  • Tabeau, E., van den Berg Jeths, A., & Heathcote, C. (2001). Forecasting mortality in developed countries: Insights from a statistical, demographic and epidemiological perspective. Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Thatcher, A. R., Kannisto, V., & Vaupel, J. W. (1998). The force of mortality at ages 80 to 120 (Odense Monographs on Population Aging No. 5). Odense, Denmark: Odense University Press.

    Google Scholar 

  • United Nations Population Division. (2015). World population prospects: The 2015 revision, methodology of the United Nations population estimates and projections (Working Paper No. ESA/P/WP.242). New York, NY: United Nations Department of Economic and Social Affairs.

    Google Scholar 

  • Vaupel, J. W., Carey, J. R., & Christensen, K. (2003). It’s never too late. Science, 301, 1679–1681.

    Article  Google Scholar 

  • Vaupel, J. W., Carey, J. R., Christensen, K., Johnson, T. E., Yashin, A. I., Holm, N. V.,... Curtsinger, J. W. (1998). Biodemographic trajectories of longevity. Science, 280, 855–860.

    Article  Google Scholar 

  • Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439–454.

    Article  Google Scholar 

  • Wang, J.-L., Muller, H.-G., & Capra, W. B. (1998). Analysis of oldest-old mortality: Lifetables revisited. Annals of Statistics, 26, 126–163.

    Article  Google Scholar 

  • Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics, 18, 293–297.

    Google Scholar 

  • Wickham, H. (2009). Ggplot2: Elegant graphics for data analysis. New York, NY: Springer.

    Book  Google Scholar 

  • Wickham, H., François, R., Henry, L., & Müller, K. (2016). Dplyr: A grammar of data manipulation [R package version 0.5. 0 database tool]. Vienna, Austria: R Core Development Team. Retrieved from https://cran.r-project.org/package=dplyr

  • Wilmoth, J. R. (1995). Are mortality rates falling at extremely high ages? An investigation based on a model proposed by Coale and Kisker. Population Studies, 49, 281–295.

    Article  Google Scholar 

  • Yashin, A. I., Vaupel, J. W., & Iachine, I. A. (1994). A duality in aging: The equivalence of mortality models based on radically different concepts. Mechanisms of Ageing and Development, 74, 1–14.

    Article  Google Scholar 

  • Yi, Z., & Vaupel, J. W. (2003). Oldest old mortality in China. Demographic Research, 8(article 7), 215–244. https://doi.org/10.4054/DemRes.2003.8.7

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Vladimir Canudas-Romo, Scott Lynch, Matthew J. Salganik, and three anonymous reviews for helpful comments on early drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis M. Feehan.

Electronic supplementary material

ESM 1

(PDF 394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feehan, D.M. Separating the Signal From the Noise: Evidence for Deceleration in Old-Age Death Rates. Demography 55, 2025–2044 (2018). https://doi.org/10.1007/s13524-018-0728-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13524-018-0728-x

Keywords

Navigation