Comparing Observed and Unobserved Components of Childhood: Evidence From Finnish Register Data on Midlife Mortality From Siblings and Their Parents

Abstract

In this study, we argue that the long arm of childhood that determines adult mortality should be thought of as comprising an observed part and its unobserved counterpart, reflecting the observed socioeconomic position of individuals and their parents and unobserved factors shared within a family. Our estimates of the observed and unobserved parts of the long arm of childhood are based on family-level variance in a survival analytic regression model, using siblings nested within families as the units of analysis. The study uses a sample of Finnish siblings born between 1936 and 1950 obtained from Finnish census data. Individuals are followed from ages 35 to 72. To explain familial influence on mortality, we use demographic background factors, the socioeconomic position of the parents, and the individuals’ own socioeconomic position at age 35 as predictors of all-cause and cause-specific mortality. The observed part—demographic and socioeconomic factors, including region; number of siblings; native language; parents’ education and occupation; and individuals’ income, occupation, tenancy status, and education—accounts for between 10 % and 25 % of the total familial influence on mortality. The larger part of the influence of the family on mortality is not explained by observed individual and parental socioeconomic position or demographic background and thus remains an unobserved component of the arm of childhood. This component highlights the need to investigate the influence of childhood circumstances on adult mortality in a comprehensive framework, including demographic, social, behavioral, and genetic information from the family of origin.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    See Online Resource 1 for the calculation.

References

  1. Aalen, O. O., Valberg, M., Grotmol, T., & Tretli, S. (2015). Understanding variation in disease risk: The elusive concept of frailty. International Journal of Epidemiology, 44, 1408–1421.

    Article  Google Scholar 

  2. Aaltonen, S., Kaprio, J., Vuoksimaa, E., Huppertz, C., Kujala, U. M., & Silventoinen, K. (2016). Genetic architecture of motives for leisure-time physical activity: A twin study. Scandinavian Journal of Medicine & Science in Sports, 27, 1431–1441.

  3. Agahi, N., Shaw, B. A., & Fors, S. (2014). Social and economic conditions in childhood and the progression of functional health problems from midlife into old age. Journal of Epidemiology and Community Health, 68, 734–740.

    Article  Google Scholar 

  4. Andersson, M. A. (2016). Chronic disease at midlife. Journal of Health and Social Behavior, 57, 373–389.

    Article  Google Scholar 

  5. Becker, G. S., & Tomes, N. (1976). Child endowments and the quantity and quality of children. Journal of Political Economy, 84(4, Part 2), S143–S162.

    Article  Google Scholar 

  6. Beekman, M., Blanché, H., Perola, M., Hervonen, A., Bezrukov, V., Sikora, E., . . . GEHA Consortium. (2013). Genome-wide linkage analysis for human longevity: Genetics of Healthy Aging Study. Aging Cell, 12, 184–193.

    Article  Google Scholar 

  7. Bengtsson, T., & Lindström, M. (2000). Childhood misery and disease in later life: The effects on mortality in old age of hazards experienced in early life, southern Sweden, 1760–1894. Population Studies, 54, 263–277.

    Article  Google Scholar 

  8. Bengtsson, T., & Lindström, M. (2003). Airborne infectious diseases during infancy and mortality in later life in southern Sweden, 1766–1894. International Journal of Epidemiology, 32, 286–294.

    Article  Google Scholar 

  9. Bengtsson, T., & Broström, G. (2009). Do conditions in early life affect old-age mortality directly and indirectly? Evidence from 19th-century rural Sweden. Social Science & Medicine, 68, 1583–1590.

  10. Ben-Shlomo, Y., & Kuh, D. (2002). A life course approach to chronic disease epidemiology: Conceptual models, empirical challenges and interdisciplinary perspectives. International Journal of Epidemiology, 31, 285–293.

    Article  Google Scholar 

  11. Björklund, A., & Jäntti, M. (2012). How important is family background for labor-economic outcomes? Labour Economics, 19, 465–474.

    Article  Google Scholar 

  12. Blane, D., Kelly-Irving, M., d’Errico, A., Bartley, M., & Montgomery, S. (2013). Social-biological transitions: How does the social become biological? Longitudinal and Life Course Studies, 4, 136–146.

    Google Scholar 

  13. Blau, P. M., & Duncan, O. D. (1967). The American occupational structure. New York, NY: Wiley.

  14. Blomgren, J., Martikainen, P., Mäkelä, P., & Valkonen, T. (2004). The effects of regional characteristics on alcohol-related mortality—A register-based multilevel analysis of 1.1 million men. Social Science & Medicine, 58, 2523–2535.

    Article  Google Scholar 

  15. Boardman, J. D. (2009). State-level moderation of genetic tendencies to smoke. American Journal of Public Health, 99, 480–486.

    Article  Google Scholar 

  16. Boardman, J. D., Domingue, B. W., Blalock, C. L., Haberstick, B. C., Harris, K. M., & McQueen, M. B. (2014). Is the gene-environment interaction paradigm relevant to genome-wide studies? The case of education and body mass index. Demography, 51, 119–139.

    Article  Google Scholar 

  17. Bouchard, C. (2008). Gene–environment interactions in the etiology of obesity: Defining the fundamentals. Obesity, 16(S3), S5–S10.

    Article  Google Scholar 

  18. Campbell, C. D., & Lee, J. Z. (2009). Long-term mortality consequences of childhood family context in Liaoning, China, 1749–1909. Social Science & Medicine, 68, 1641–1648.

    Article  Google Scholar 

  19. Case, A., & Paxson, C. (2010). Causes and consequences of early-life health. Demography, 47, S65–S85.

    Article  Google Scholar 

  20. Dannefer, D. (1997). Aging as intracohort differentiation: Accentuation, the Matthew effect, and the life course. Sociological Forum, 2, 211–236.

    Article  Google Scholar 

  21. Dannefer, D. (2003). Cumulative advantage/disadvantage and the life course: Cross-fertilizing age and social science theory. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 58, S327–S337.

    Article  Google Scholar 

  22. Davey Smith, G., Hart, C., Blane, D., Gillis, C., & Hawthorne, V. (1997). Lifetime socioeconomic position and mortality: Prospective observational study. BMJ, 314, 547. https://doi.org/10.1136/bmj.314.7080.547

    Article  Google Scholar 

  23. DiPrete, T. A., & Eirich, G. M. (2006). Cumulative advantage as a mechanism for inequality: A review of theoretical and empirical developments. Annual Review of Sociology, 32, 271–297.

    Article  Google Scholar 

  24. Dowd, J. B., Simanek, A. M., & Aiello, A. E. (2009). Socio-economic status, cortisol and allostatic load: A review of the literature. International Journal of Epidemiology, 38, 1297–1309.

    Article  Google Scholar 

  25. Duncan, G. J., Boisjoly, J., & Harris, K. M. (2001). Sibling, peer, neighbor, and schoolmate correlations as indicators of the importance of context for adolescent development. Demography, 38, 437–447.

    Article  Google Scholar 

  26. Elo, I. T. (2009). Social class differentials in health and mortality: Patterns and explanations in comparative perspective. Annual Review of Sociology, 35, 553–572.

    Article  Google Scholar 

  27. Elo, I. T., Martikainen, P., & Myrskylä, M. (2014). Socioeconomic status across the life course and all-cause and cause-specific mortality in Finland. Social Science & Medicine, 119, 198–206.

    Article  Google Scholar 

  28. Falkstedt, D., Lundberg, I., & Hemmingsson, T. (2011). Childhood socio-economic position and risk of coronary heart disease in middle age: A study of 49,321 male conscripts. European Journal of Public Health, 21, 713–718.

    Article  Google Scholar 

  29. Fenelon, A., & Preston, S. H. (2012). Estimating smoking-attributable mortality in the United States. Demography, 49, 797–818.

    Article  Google Scholar 

  30. Freese, J. (2008). Genetics and the social science explanation of individual outcomes. American Journal of Sociology, 114(Suppl.), S1–S35.

    Article  Google Scholar 

  31. Freese, J., & Shostak, S. (2009). Genetics and social inquiry. Annual Review of Sociology, 35, 107–128.

    Article  Google Scholar 

  32. Gagnon, A., & Mazan, R. (2009). Does exposure to infectious diseases in infancy affect old-age mortality? Evidence from a pre-industrial population. Social Science & Medicine, 68, 1609–1616.

    Article  Google Scholar 

  33. Galea, S., Riddle, M., & Kaplan, G. A. (2010). Causal thinking and complex system approaches in epidemiology. International Journal of Epidemiology, 39, 97–106.

    Article  Google Scholar 

  34. Galobardes, B., Lynch, J. W., & Davey Smith, G. (2004). Childhood socioeconomic circumstances and cause-specific mortality in adulthood: Systematic review and interpretation. Epidemiologic Reviews, 26, 7–21.

    Article  Google Scholar 

  35. Galobardes, B., Lynch, J. W., & Davey Smith, G. (2008). Is the association between childhood socioeconomic circumstances and cause-specific mortality established? Update of a systematic review. Journal of Epidemiology and Community Health, 62, 387–390.

    Article  Google Scholar 

  36. Gavrilov, L. A., & Gavrilova, N. S. (2001). Human longevity and parental age at conception. In J.-M. Robine, T. B. L. Kirkwood, & M. Allard (Eds.), Sex and longevity: Sexuality, gender, reproduction, parenthood (pp. 7–31). Berlin, Germany: Springer-Verlag.

    Chapter  Google Scholar 

  37. Gentilini, D., Mari, D., Castaldi, D., Remondini, D., Ogliari, G., Ostan, R., . . . Vitale, G. (2013). Role of epigenetics in human aging and longevity: Genome-wide DNA methylation profile in centenarians and centenarians’ offspring. Age, 35, 1961–1973.

    Article  Google Scholar 

  38. Geyer, S. (2008). Social inequalities in the incidence and case fatality of cancers of the lung, the stomach, the bowels, and the breast. Cancer Causes & Control, 19, 965–974.

    Article  Google Scholar 

  39. Gobbens, R. J. J., Luijkx, K. G., Wijnen-Sponselee, M. T., & Schols, J. M. G. A. (2010). Towards an integral conceptual model of frailty. Journal of Nutrition, Health & Aging, 14, 175–181.

  40. Haas, S. (2008). Trajectories of functional health: The “long arm” of childhood health and socioeconomic factors. Social Science & Medicine, 66, 849–861.

    Article  Google Scholar 

  41. Hart, C. L., & Davey Smith, G. (2003). Relation between number of siblings and adult mortality and stroke risk: 25 year follow up of men in the Collaborative study. Journal of Epidemiology and Community Health, 57, 385–391.

    Article  Google Scholar 

  42. Hayward, M. D., & Gorman, B. K. (2004). The long arm of childhood: The influence of early-life social conditions on men’s mortality. Demography, 41, 87–107.

    Article  Google Scholar 

  43. Herttua, K., Mäkelä, P., & Martikainen, P. (2008). Changes in alcohol-related mortality and its socioeconomic differences after a large reduction in alcohol prices: A natural experiment based on register data. American Journal of Epidemiology, 168, 1110–1118.

    Article  Google Scholar 

  44. Hoffmann, R. (2008). Socioeconomic differences in old age mortality (Vol. 25). New York, NY: Springer.

    Book  Google Scholar 

  45. Hougaard, P. (1995). Frailty models for survival data. Lifetime Data Analysis, 1, 255–273.

    Article  Google Scholar 

  46. House, J. S., Lepkowski, J. M., Kinney, A. M., Mero, R. P., Kessler, R. C., & Herzog, A. R. (1994). The social stratification of aging and health. Journal of Health and Social Behavior, 35, 213–234.

    Article  Google Scholar 

  47. Hubbard, R. E., Andrew, M. K., & Rockwood, K. (2009). Effect of parental age at birth on the accumulation of deficits, frailty and survival in older adults. Age and Ageing, 38, 380–385.

    Article  Google Scholar 

  48. Jann, B. (2007). Making regression tables simplified. Stata Journal, 7, 227–244.

    Google Scholar 

  49. Johnson, R. C., Schoeni, R. F., & Rogowski, J. A. (2012). Health disparities in mid-to-late life: The role of earlier life family and neighborhood socioeconomic conditions. Social Science & Medicine, 74, 625–636.

    Article  Google Scholar 

  50. Kelly-Irving, M., Lepage, B., Dedieu, D., Lacey, R., Cable, N., Bartley, M., . . . Delpierre, C. (2013). Childhood adversity as a risk for cancer: Findings from the 1958 British birth cohort study. BMC Public Health, 13, 767. https://doi.org/10.1186/1471-2458-13-767

    Article  Google Scholar 

  51. Kröger, H., Fritzell, J., & Hoffmann, R. (2016). The association of levels of and decline in grip strength in old age with trajectories of life course occupational position. PLoS One, 11(5), e0155954. https://doi.org/10.1371/journal.pone.0155954

    Article  Google Scholar 

  52. Kröger, H., Kroh, M., Kroll, L. E., & Lampert, T. (2017). Einkommensunterschiede in der Mortalität in Deutschland—Ein empirischer Erklärungsversuch [Differences in income in mortality in Germany—An empirical explanation attempt]. Zeitschrift für Soziologie, 46, 124–146.

    Article  Google Scholar 

  53. Kuh, D., Shah, I., Richards, M., Mishra, G., Wadsworth, M., & Hardy, R. (2009). Do childhood cognitive ability or smoking behaviour explain the influence of lifetime socio-economic conditions on premature adult mortality in a British post war birth cohort? Social Science & Medicine, 68, 1565–1573.

    Article  Google Scholar 

  54. Kulik, M. C., Hoffmann, R., Judge, K., Looman, C., Menvielle, G., Kulhánová, I., . . . Mackenbach, J. P. (2013). Smoking and the potential for reduction of inequalities in mortality in Europe. European Journal of Epidemiology, 28, 959–971.

    Article  Google Scholar 

  55. Lahti, R. A., & Penttilä, A. (2001). The validity of death certificates: Routine validation of death certification and its effects on mortality statistics. Forensic Science International, 115, 15–32.

    Article  Google Scholar 

  56. Link, B. G., & Phelan, J. (1995). Social conditions as fundamental causes of disease. Journal of Health and Social Behavior, 35, 80–94.

    Article  Google Scholar 

  57. Link, B. G., Susser, E. S., Factor-Litvak, P., March, D., Kezios, K. L., Lovasi, G. S., . . . Cohn, B. A. (2017). Disparities in self-rated health across generations and through the life course. Social Science & Medicine, 174, 17–25.

    Article  Google Scholar 

  58. Lynch, W. J., Kaplan, A. G., & Salonen, T. J. (1997). Why do poor people behave poorly? Variation in adult health behaviours and psychosocial characteristics by stages of the socioeconomic lifecourse. Social Science & Medicine, 44, 809–819.

    Article  Google Scholar 

  59. Mackenbach, J. P., Huisman, M., Andersen, O., Bopp, M., Borgan, J.-K., Borrell, C., . . . Kunst, A. E. (2004). Inequalities in lung cancer mortality by the educational level in 10 European populations. European Journal of Cancer, 40, 126–135.

  60. Mackenbach, J. P., Stirbu, I., Roskam, A.-J. R., Schaap, M. M., Menvielle, G., Leinsalu, M., & Kunst, A. E. (2008). Socioeconomic inequalities in health in 22 European countries. New England Journal of Medicine, 358, 2468–2481.

    Article  Google Scholar 

  61. McGue, M., Vaupel, J. W., Holm, N., & Harvald, B. (1993). Longevity is moderately heritable in a sample of Danish twins born 1870–1880. Journal of Gerontology, 48, B237–B244.

    Article  Google Scholar 

  62. Merlo, J. (2011). Contextual influences on the individual life course: Building a research framework for social epidemiology. Psychosocial Intervention, 20, 109–118.

    Article  Google Scholar 

  63. Merlo, J., Chaix, B., Ohlsson, H., Beckman, A., Johnell, K., Hjerpe, P., . . . Larsen, K. (2006). A brief conceptual tutorial of multilevel analysis in social epidemiology: Using measures of clustering in multilevel logistic regression to investigate contextual phenomena. Journal of Epidemiology and Community Health, 60, 290–297.

    Article  Google Scholar 

  64. Mishra, G., Nitsch, D., Black, S., De Stavola, B., Kuh, D., & Hardy, R. (2009). A structured approach to modelling the effects of binary exposure variables over the life course. International Journal of Epidemiology, 38, 528–537.

    Article  Google Scholar 

  65. Mishra, G. D., Chiesa, F., Goodman, A., De Stavola, B., & Koupil, I. (2013). Socio-economic position over the life course and all-cause, and circulatory diseases mortality at age 50–87 years: Results from a Swedish birth cohort. European Journal of Epidemiology, 28, 139–147.

    Article  Google Scholar 

  66. Murabito, J. M., Yuan, R., & Lunetta, K. L. (2012). The search for longevity and healthy aging genes: Insights from epidemiological studies and samples of long-lived individuals. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 67A, 470–479.

  67. Myrskylä, M., Elo, I. T., Kohler, I. V., & Martikainen, P. (2014). The association between advanced maternal and paternal ages and increased adult mortality is explained by early parental loss. Social Science & Medicine, 119, 215–223.

    Article  Google Scholar 

  68. O’Rand, A. M., & Hamil-Luker, J. (2005). Processes of cumulative adversity: Childhood disadvantage and increased risk of heart attack across the life course. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 60(Special Issue 2), 117–124.

    Article  Google Scholar 

  69. O’Rand, A. M., & Henretta, J. C. (1999). Age and inequality: Diverse pathways through later life. Boulder, CO: Westview Press.

    Google Scholar 

  70. Pakpahan, E., Hoffmann, R., & Kröger, H. (2017). The long arm of childhood circumstances on health in old age: Evidence from SHARELIFE. Advances in Life Course Research, 31, 1–10.

    Article  Google Scholar 

  71. Palloni, A. (2006). Reproducing inequalities: Luck, wallets, and the enduring effects of childhood health. Demography, 43, 587–615.

    Article  Google Scholar 

  72. Pearlin, L. I. (1989). The sociological study of stress. Journal of Health and Social Behavior, 30, 241–256.

    Article  Google Scholar 

  73. Pescosolido, B. A., & Levy, J. A. (2002). The role of social networks in health, illness, disease and healing: The accepting present, the forgotten past, and the dangerous potential for a complacent future. In J. A. Levy & B. A. Pescosolido (Eds.), Advances in medical sociology: Social networks and health (Vol. 8, pp. 3–25). Bingley, UK: Emerald Group.

    Chapter  Google Scholar 

  74. Pescosolido, B. A., Perry, B. L., Long, J. S., Martin, J. K., Nurnberger, J. I., Jr., & Hesselbrock, V. (2008). Under the influence of genetics: How transdisciplinarity leads us to rethink social pathways to illness. American Journal of Sociology, 114(Suppl. 1), S171–S201.

    Article  Google Scholar 

  75. Pudrovska, T., & Anikputa, B. (2014). Early-life socioeconomic status and mortality in later life: An integration of four life-course mechanisms. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 69, 451–460.

    Article  Google Scholar 

  76. Qi, L., & Cho, Y. A. (2008). Gene-environment interaction and obesity. Nutrition Reviews, 66, 684–694.

    Article  Google Scholar 

  77. Saarela, J., & Finnäs, F. (2009). Geographic ancestry and cause-specific mortality in a national population. Population Research and Policy Review, 28, 169–194.

    Article  Google Scholar 

  78. Shanahan, M. J., & Hofer, S. M. (2005). Social context in gene-environment interactions: Retrospect and prospect. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 60(Special Issue 1), 65–76.

    Article  Google Scholar 

  79. Smith, K. R., Mineau, G. P., Garibotti, G., & Kerber, R. (2009). Effects of childhood and middle-adulthood family conditions on later-life mortality: Evidence from the Utah Population Database, 1850–2002. Social Science & Medicine, 68, 1649–1658.

    Article  Google Scholar 

  80. Solon, G., Corcoran, M., Gordon, R., & Laren, D. (1991). A longitudinal analysis of sibling correlations in economic status. Journal of Human Resources, 26, 509–534.

    Article  Google Scholar 

  81. Szanton, S. L., Gill, J. M., & Allen, J. K. (2005). Allostatic load: A mechanism of socioeconomic health disparities? Biological Research for Nursing, 7, 7–15.

    Article  Google Scholar 

  82. Tarkiainen, L., Martikainen, P., & Laaksonen, M. (2016). The contribution of education, social class and economic activity to the income-mortality association in alcohol-related and other mortality in Finland in 1988–2012. Addiction, 111, 456–464.

    Article  Google Scholar 

  83. Turner, R. J., Thomas, C. S., & Brown, T. H. (2016). Childhood adversity and adult health: Evaluating intervening mechanisms. Social Science & Medicine, 156, 114–124.

    Article  Google Scholar 

  84. Turner, R. J., Turner, J. B., & Hale, W. B. (2014). Social relationships and social support. In R. J. Johnson, R. J. Turner, & B. G. Link (Eds.), Sociology of mental health selected topics from forty years 1970s–2010s (pp. 1–20). New York, NY: Springer.

    Google Scholar 

  85. Turrell, G., Lynch, J. W., Leite, C., Raghunathan, T., & Kaplan, G. A. (2007). Socioeconomic disadvantage in childhood and across the life course and all-cause mortality and physical function in adulthood: Evidence from the Alameda County Study. Journal of Epidemiology and Community Health, 61, 723–730.

    Article  Google Scholar 

  86. van den Berg, G. J., & Drepper, B. (2015). Inference for shared-frailty survival models with left-truncated data. Econometric Reviews, 35, 1075–1098.

    Article  Google Scholar 

  87. Vaupel, J. W. (1988). Inherited frailty and longevity. Demography, 25, 277–287.

    Article  Google Scholar 

  88. Vaupel, J. W., Carey, J. R., Christensen, K., Johnson, T. E., Yashin, A. I., Holm, N. V, . . . Curtsinger, J. W. (1998). Biodemographic trajectories of longevity. Science, 280, 855–860.

  89. Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439–454.

    Article  Google Scholar 

  90. Wienke, A. (2010). Frailty models in survival analysis (1st ed.). Boca Raton, FL: Taylor and Francis Group.

    Book  Google Scholar 

  91. Zajacova, A., Walsemann, K. M., & Dowd, J. B. (2015). The long arm of adolescent health among men and women: Does attained status explain its association with mid-adulthood health? Population Research and Policy Review, 34, 19–48.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Diana Schacht and three anonymous reviewers for valuable feedback on earlier versions of this article. We especially thank Lea Kröger for feedback on and inspiration for the study. All remaining mistakes are, of course, solely the authors’ responsibility.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hannes Kröger.

Electronic supplementary material

ESM 1

(PDF 1.98 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kröger, H., Hoffmann, R., Tarkiainen, L. et al. Comparing Observed and Unobserved Components of Childhood: Evidence From Finnish Register Data on Midlife Mortality From Siblings and Their Parents. Demography 55, 295–318 (2018). https://doi.org/10.1007/s13524-017-0635-6

Download citation

Keywords

  • Mortality
  • Long arm of childhood
  • Siblings
  • Register data
  • Finland